首页> 外文期刊>Journal of Computational Physics >Quasi-ENO schemes for unstructured meshes based on unlimited data-dependent least-Square reconstruction
【24h】

Quasi-ENO schemes for unstructured meshes based on unlimited data-dependent least-Square reconstruction

机译:基于无限数据相关最小二乘重构的非结构化网格的拟ENO方案

获取原文
获取原文并翻译 | 示例

摘要

A crucial step in obtaining high-order accurate steady-state solu- tions to the Euler and Navier-Stokes equations is the high-order accurate reconstruction of the solution from cell-averaged values. Only after this reconstruction has been completed can the flux inte- Gral around a control volume be accurately assessed. In this work, A new reconstruction scheme is presented that is conservative, is Uniformly accurate, allows only asymptotically small overshoots, Is easy to implement on arbitrary meshes, has good convergence Properties, and is computationally efficient.
机译:获得Euler和Navier-Stokes方程的高阶精确稳态解的关键步骤是根据单元平均值对解进行高阶精确重构。只有完成此重建后,才能准确评估控制体积附近的磁通积分。在这项工作中,提出了一种新的重构方案,该方案是保守的,一致的准确的,仅允许渐进的小过冲,易于在任意网格上实现,具有良好的收敛性以及计算效率高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号