首页> 外文期刊>Journal of Computational and Nonlinear Dynamics >Equilibrium, Stability, and Dynamics of Rectangular Liquid-Filled Vessels
【24h】

Equilibrium, Stability, and Dynamics of Rectangular Liquid-Filled Vessels

机译:矩形液体填充容器的平衡,稳定性和动力学

获取原文
获取原文并翻译 | 示例

摘要

Here we focus on the stability and dynamic characteristics of a rectangular, liquid-filled vessel. The position vector of the center of gravity of the liquid volume is derived and used to express the equilibrium angles of the vessel. Analysis of the potential function determines the stability of these equilibria, and bifurcation diagrams are constructed to demonstrate the co-existence of several equilibrium configurations of the vessel. To validate the results, a vessel of rectangular cross section was built. The results of the experiments agree well with the theoretical predictions of stability. The dynamics of the unforced and forced systems with a threshold constraint is discussed in the context of the nonlinear Mathieu equation.
机译:在这里,我们关注矩形的液体填充容器的稳定性和动态特性。导出液体体积重心的位置矢量,并将其用于表示容器的平衡角。对势函数的分析确定了这些平衡的稳定性,并通过分叉图来证明容器的几种平衡构型的共存。为了验证结果,建造了矩形横截面的容器。实验结果与稳定性的理论预测吻合良好。在非线性Mathieu方程的背景下讨论了具有阈值约束的非强迫和强迫系统的动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号