首页> 外文期刊>Journal of Computational and Nonlinear Dynamics >Amplitude Independent Frequency Synchroniser for a Cubic Planar Polynomial System
【24h】

Amplitude Independent Frequency Synchroniser for a Cubic Planar Polynomial System

机译:三次平面多项式系统的幅度独立频率同步器

获取原文
获取原文并翻译 | 示例

摘要

The problem of local linearizability of the planar linear center perturbed by cubic non- linearities in all generalities on the system parameters (14 parameters) is far from being solved. The synchronization problem (as noted in Pikovsky, A., Rosenblum, M., and Kurths, J., 2003, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Science Series, Cambridge University Press, UK, and Blekhman, I. I., 1988, Synchronisation in Science and Technology, ASME Press Translations, New York) consists in bringing appropriate modifications on a given system to obtain a desired dynamic. The desired phase portrait along this paper contains a compact region around a singular point at the origin in which lie periodic orbits with the same period (independently from the chosen initial conditions). In this paper, starting from a five parameters non isochronous Chouikha cubic system (Chouikha, A. R., 2007, “Isochronous Centers of Lienard Type Equations and Applications,” J. Math. Anal. Appl., 331, pp. 358–376) we identify all possible monomial perturbations of degree d {2, 3} insuring local linearizability of the perturbed system. The necessary conditions are obtained by the Normal Forms method. These conditions are real algebraic equations (multivariate polynomials) in the parameters of the studied ordinary differential system. The efficient algorithm FGb (J. C. Faugère, “FGb Salsa Software,” http://fgbrs.lip6.fr) for computing the Gröbner basis is used. For the family studied in this paper, an exhaustive list of possible parameters values insuring local linearizability is established. All the found cases are already known in the literature but the contexts are different since our object is the synchronisation rather than the classification. This paper can be seen as a direct continuation of several new works concerned with the hinting of cubic isochronous centers, (in particular Bardet, M., and Boussaada, I., 2011, “Compexity Reduction of C-algorithm,” App. Math. Comp., in press; Boussaada, I., Chouikha, A. R., and Strelcyn, J.-M., 2011, “Isochronicity Conditions for some Planar Polynomial Systems,” Bull. Sci. Math, 135(1), pp. 89–112; Bardet, M., Boussaada, I., Chouikha, A. R., and Strelcyn, J.-M., 2011, “Isochronicity Conditions for some Planar Polynomial Systems,” Bull. Sci. Math, 135(2), pp. 230–249; and furthermore, it can be considered as an adaptation of a qualitative theory method to a synchronization problem.
机译:系统参数(14个参数)在所有方面都受到三次非线性的扰动,使平面线性中心的局部线性化问题尚未解决。同步问题(如Pikovsky,A.,Rosenblum,M.和Kurths,J.,2003年,《同步:非线性科学的普遍概念》,剑桥非线性科学丛书,英国剑桥大学出版社,英国Blekhman,II, 1988年,《科学与技术的同步》,ASME Press Translations,纽约)在于对给定的系统进行适当的修改以获得所需的动态效果。沿本文的所需相像包含一个围绕原点的奇异点的紧凑区域,在该区域中具有相同周期(独立于所选初始条件)的周期性轨道。在本文中,我们从五个参数的非等时Chouikha三次系统(Chouikha,AR,2007年,“ Lienard型方程和应用的等时中心”,J。Math。Anal。Appl。,331,第358-376页)开始,我们确定度d {2,3}的所有可能的单项式扰动,以确保被扰动系统的局部线性化。必要条件通过“正常形式”方法获得。这些条件是所研究的常微分系统参数中的实数代数方程(多元多项式)。使用了用于计算Gröbner基础的有效算法FGb(J。C.Faugère,“ FGb Salsa Software”,http://fgbrs.lip6.fr)。对于本文研究的族,建立了确保局部线性化的可能参数值的详尽列表。所有发现的案例在文献中都是已知的,但是由于我们的目标是同步而不是分类,因此上下文有所不同。本文可以看作是与暗示立方等时中心有关的几项新著作的直接延续(特别是Bardet,M.和Boussaada,I.,2011,“ C算法的Compexity Reduction”,App。Math。 Comp。,印刷中; I。Boussaada,I.A。Chouikha,J.-M。Strelcyn,2011年,“某些平面多项式系统的等时性条件”,Bull。Sci。Math,135(1),第pp。 89-112; Bardet,M.,I。Boussaada,A。Chouikha和J.-M. Strelcyn,2011年,“某些平面多项式系统的等时性条件”,《科学数学》,135(2), pp。230–249;并且,它可以被认为是定性理论方法对同步问题的一种适应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号