首页> 外文期刊>Journal of Computational Neuroscience >Subthreshold amplitude and phase resonance in models of quadratic type: Nonlinear effects generated by the interplay of resonant and amplifying currents
【24h】

Subthreshold amplitude and phase resonance in models of quadratic type: Nonlinear effects generated by the interplay of resonant and amplifying currents

机译:二次型模型中的亚阈值幅度和相位谐振:谐振电流和放大电流的相互作用产生非线性效应

获取原文
获取原文并翻译 | 示例

摘要

We investigate the biophysical and dynamic mechanisms of generation of subthreshold amplitude and phase resonance in response to sinusoidal input currents in two-dimensional models of quadratic type. These models feature a parabolic voltage nullcline and a linear nullcline for the recovery gating variable, capturing the interplay of the so-called resonant currents (e.g., hyperpolarization-activated mixed-cation inward and slow potassium) and amplifying currents (e.g., persistent sodium) in biophysi-cally realistic parameter regimes. These currents underlie the generation of resonance in medial entorhinal cortex layer Ⅱ stellate cells and CA1 pyramidal cells. We show that quadratic models exhibit nonlinear amplifications of the voltage response to sinusoidal inputs in the resonant frequency band. These are expressed as an increase in the impedance profile as the input amplitude increases. They are stronger for values positive than negative to resting potential and are accompanied by a shift in the phase profile, a decrease in the resonant and phase-resonant frequencies, and an increase in the sharpness of the voltage response. These effects are more prominent for smaller values of e (larger levels of the time scale separation between the voltage and the resonant gating variable) and for values of the resting potential closer to threshold for spike generation. All other parameter fixed, as ∈ increases the voltage response becomes "more linear"; i.e., the nonlinearities are present, but "ignored". In addition, the nonlinear effects are strongly modulated by the curvature of the parabolic voltage nullcline (partially reflecting the effects of the amplifying current) and the slope of the resonant current activation curve. Following the effects of changes in the biophysical conductances of realistic conductance-based models through the parameters of the quadratic model, we characterize the qualitatively different effects that resonant and amplifying currents have on the nonlinear properties of the voltage response. We identify different classes of resonant currents, represented by h- and slow potassium, according to whether they enhance (h-) or attenuate (slow potassium) the nonlinear effects. Finally, we use dynamical systems tools to investigate the dynamic mechanisms of generation of resonance and phase-resonance. We show that the nonlinear effects on the voltage response (e.g., amplification of the voltage response in the resonant frequency band and shifts in the resonant and phase-resonant frequencies) result from the ability of limit cycle trajectories to follow the unstable (right) branch of the voltage nullcline for a significant amount of time. This is a canard-related mechanism that has been shown to underlie the generation of intrinsic subthreshold oscillations in quadratic type models such as medial entorhinal cortex stellate cells. Overall, our results highlight the complexity of the voltage response to oscillatory inputs in nonlinear models and the roles that resonant and amplifying currents have in shaping these responses.
机译:我们在二维类型的二维模型中研究响应阈值输入电流的阈值幅度和相位共振的产生的生物物理和动态机制。这些模型具有用于恢复门控变量的抛物线电压零线和线性零线,捕获了所谓的谐振电流(例如,超极化激活的混合阳离子内向和慢速钾离子)的相互作用,并放大了电流(例如,持久性钠)在生物物理现实参数体系中。这些电流是在内侧内嗅皮质层Ⅱ星状细胞和CA1锥体细胞中产生共振的基础。我们表明,二次模型在谐振频带中显示出对正弦输入电压响应的非线性放大。这些表示为阻抗轮廓随输入幅度的增加而增加。对于静息电势,正值大于负值时,它们会更强,并伴有相线的偏移,谐振和相谐振频率的降低以及电压响应的清晰度增加。对于较小的e值(电压和谐振门控变量之间的时间刻度间隔较大的水平)和更接近于尖峰产生阈值的静止电势值,这些影响更为突出。所有其他固定的参数,随着ε的增加,电压响应变得“更线性”。即存在非线性,但被“忽略”。此外,非线性效应被抛物线零曲线的曲率(部分反映了放大电流的效应)和谐振电流激活曲线的斜率强烈地调制。通过二次模型的参数,通过基于实际电导模型的生物物理电导变化的影响,我们表征了谐振和放大电流对电压响应非线性特性的定性不同影响。根据它们是增强(h-)还是减弱(慢钾)非线性效应,我们确定了以h-和慢钾表示的不同类别的谐振电流。最后,我们使用动力学系统工具研究共振和相共振产生的动力学机制。我们表明,对电压响应的非线性影响(例如,谐振频带中电压响应的放大以及谐振和相谐振频率的偏移)是由极限循环轨迹跟随不稳定(右)分支的能力引起的在相当长的时间内消耗零电压。这是一种与canard相关的机制,已被证明是在二次模型(例如内侧内嗅皮层星状细胞)中固有的阈下振荡生成的基础。总的来说,我们的结果突出了非线性模型中对振荡输入的电压响应的复杂性,以及谐振和放大电流在塑造这些响应中的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号