首页> 外文期刊>Journal of Computational Neuroscience >From global to local: exploring the relationship between parameters and behaviors in models of electrical excitability
【24h】

From global to local: exploring the relationship between parameters and behaviors in models of electrical excitability

机译:从全局到局部:探索电兴奋性模型中参数与行为之间的关系

获取原文
获取原文并翻译 | 示例

摘要

Models of electrical activity in excitable cells involve nonlinear interactions between many ionic currents. Changing parameters in these models can produce a variety of activity patterns with sometimes unexpected effects. Further more, introducing new currents will have different effects depending on the initial parameter set. In this study we combined global sampling of parameter space and local analysis of representative parameter sets in a pituitary cell model to understand the effects of adding K (+) conductances, which mediate some effects of hormone action on these cells. Global sampling ensured that the effects of introducing K (+) conductances were captured across a wide variety of contexts of model parameters. For each type of K (+) conductance we determined the types of behavioral transition that it evoked. Some transitions were counterintuitive, and may have been missed without the use of global sampling. In general, the wide range of transitions that occurred when the same current was applied to the model cell at different locations in parameter space highlight the challenge of making accurate model predictions in light of cell-to-cell heterogeneity. Finally, we used bifurcation analysis and fast/slow analysis to investigate why specific transitions occur in representative individual models. This approach relies on the use of a graphics processing unit (GPU) to quickly map parameter space to model behavior and identify parameter sets for further analysis. Acceleration with modern low-cost GPUs is particularly well suited to exploring the moderate-sized (5-20) parameter spaces of excitable cell and signaling models.
机译:可激发细胞中的电活动模型涉及许多离子电流之间的非线性相互作用。在这些模型中更改参数会产生各种活动模式,有时会产生意想不到的效果。此外,根据初始参数集的不同,引入新的电流将产生不同的影响。在这项研究中,我们结合了参数空间的全局采样和垂体细胞模型中代表性参数集的局部分析,以了解增加K(+)电导的作用,这些电导会介导激素作用于这些细胞的某些作用。全局采样可确保在各种模型参数的上下文中捕获引入K(+)电导的影响。对于每种类型的K(+)电导,我们确定了它引起的行为转变的类型。一些过渡是违反直觉的,并且可能在不使用全局采样的情况下被遗漏了。通常,当在参数空间中不同位置向模型单元施加相同电流时发生的转换范围很大,这凸显了根据单元间异质性进行精确模型预测的挑战。最后,我们使用分叉分析和快速/慢速分析来研究为什么在代表性的个体模型中会发生特定的转变。此方法依赖于使用图形处理单元(GPU)来快速映射参数空间以建模行为并识别参数集以进行进一步分析。现代低成本GPU的加速特别适合探索可激发单元和信号模型的中等大小(5-20​​)的参数空间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号