首页> 外文期刊>Journal of Computational Methods in Sciences and Engineering >Learning distributed bayesian network structure using majority-based method
【24h】

Learning distributed bayesian network structure using majority-based method

机译:使用基于多数的方法学习分布式贝叶斯网络结构

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present a majority-based method to learn Bayesian network structure from databases distributed over a peer-to-peer network. The method consists of a majority learning algorithm and a majority consensus protocol. The majority learning algorithm discovers the local Bayesian network structure based on the local database and updates the structure once new edges are learnt from neighboring nodes. The majority consensus protocol is responsible for the exchange of the local Bayesian networks between neighboring nodes. The protocol and algorithm are executed in tandem on each node. They perform their operations asynchronously and exhibit local communications. Simulation results verify that all new edges, except for edges with confidence levels close to the confidence threshold, can be discovered by exchange of messages with a small number of neighboring nodes.
机译:在本文中,我们提出了一种基于多数的方法,可从分布在对等网络上的数据库中学习贝叶斯网络结构。该方法包括多数学习算法和多数共识协议。多数学习算法根据本地数据库发现本地贝叶斯网络结构,并在从相邻节点学习到新的边缘后更新该结构。多数共识协议负责相邻节点之间的本地贝叶斯网络交换。协议和算法在每个节点上串联执行。他们异步执行其操作并显示本地通信。仿真结果证明,除具有接近置信度阈值的置信度水平的边缘外,所有其他新边缘都可以通过与少量相邻节点交换消息来发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号