首页> 外文期刊>Journal of Computational Methods in Sciences and Engineering >Relation extraction based on semantic dependency graph
【24h】

Relation extraction based on semantic dependency graph

机译:基于语义依赖性图的关系提取

获取原文
获取原文并翻译 | 示例

摘要

Distant supervision has a good effect in relation extraction tasks. Meanwhile, most methods use multi-instance learning to reduce the impact of training data been wrong labelled in distant supervision. However, the effect of multi-instance learning depends on the sentence feature vector extracted by the neural network. At present, most methods for extracting sentence features only pay attention to the structural features of sentences, while ignoring semantic features. As a result, structural feature sentences and semantic feature sentences cannot occupy the same proportion in multi-instance learning, which further influences the precision of the model. To alleviate this issue, we propose a BiLSTM-CNN-Attention model (BLCANN) based on semantic dependency graph to extract sentence features. In this model, we extract the shortest dependency path between the two entities from the semantic dependency graph as the input to the model. The shortest path combines the structural and semantic features of the sentence, which contributes to distinguishing between positive and negative examples in multiinstance learning. Experimental results show that our model is adept in extracting structural features and semantic features. Our model has increased the precision of the relationship extraction on Top100 by 10 percent compared to the baseline [9].
机译:遥远的监督在关系提取任务方面具有良好的效果。同时,大多数方法使用多实例学习来减少训练数据的影响是错误的遥远监督。然而,多实例学习的效果取决于神经网络提取的句子特征向量。目前,大多数用于提取句子的方法只关注句子的结构特征,同时忽略语义特征。结果,结构特征句子和语义特征句子不能在多实例学习中占用相同的比例,这进一步影响了模型的精度。为了缓解此问题,我们提出了一种基于语义依赖图的Bilstm-Cnn-Peponent模型(Blcann)以提取句子功能。在该模型中,我们将两个实体之间的最短依赖性路径从语义依赖图中提取为模型的输入。最短路径结合了句子的结构和语义特征,这有助于区分多际学习中的正极和否定例子。实验结果表明,我们的模型擅长提取结构特征和语义特征。与基线相比,我们的模型提高了关系提取对Top100的精度10%[9]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号