首页> 外文期刊>Journal of Computational Methods in Sciences and Engineering >A study on multi-dimension error compensation and application to the foundation pit monitoring
【24h】

A study on multi-dimension error compensation and application to the foundation pit monitoring

机译:对基坑监测的多维误差补偿与应用研究

获取原文
获取原文并翻译 | 示例

摘要

Error compensation is the key issue during camera calibration with displacement measurements. The overall error can be reduced significantly after compensation and different data intervals can be selected to reduce the calibration time while maintaining a high level of accuracy. In this study, we propose a multidimensional error compensation method that considers the error due to multiple causes. First, a multi-objective optimization method is used to optimize center recognition based on the k-means clustering algorithm. The algorithm has three steps comprising noise removal for the best co-ordinates, multi-target area identification, and target center calculation. Local and global features are then employed in a support vector regression model to estimate the error compensation. We applied the method to improve the detection of unexpected deformation and movements in a foundation pit using a real dataset obtained from the foundation pit monitoring system for the Zhoushan industry pack project. The results demonstrated that the centers determined after compensation were closer to the actual target than the original centers.
机译:误差补偿是相机校准过程中的关键问题,具有位移测量。在补偿之后可以显着降低总误差,并且可以选择不同的数据间隔以减少校准时间,同时保持高水平的精度。在本研究中,我们提出了一种多维误差补偿方法,其认为由于多个原因而导致的错误。首先,使用多目标优化方法来基于K-Means聚类算法优化中心识别。该算法有三个步骤,包括用于最佳协调,多目标区域识别和目标中心计算的噪声去除。然后,在支持向量回归模型中使用本地和全局特征以估计误差补偿。我们使用从舟山工业包项目的基坑监测系统获得的实时数据集应用了改进了基础坑中出乎意料变形和运动的方法。结果表明,补偿后确定的中心比原始中心更接近实际目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号