首页> 外文期刊>Journal of Computational Mathematics >A NEW CLASS OF UNIFORMLY SECOND ORDER ACCURATE DIFFRENCE SCHEMES FOR 2D SCALAR CONSERVATION LAWS
【24h】

A NEW CLASS OF UNIFORMLY SECOND ORDER ACCURATE DIFFRENCE SCHEMES FOR 2D SCALAR CONSERVATION LAWS

机译:二维标量守恒律的一类新的一致二阶精确差分格式

获取原文
获取原文并翻译 | 示例

摘要

In this paper, concerned with the Cauchy problem for 2D nonlinear hyperbolic conservation laws, we construct a class of uniformly second order accurate finite difference schemes, which are based on the E-schemes. By applying the conver- gence theorem of Coquel-Le Floch[1], the family of approximate solutions defined by the scheme is proven to converge to the unique entropy weak L_∞-solution.
机译:本文针对二维非线性双曲守恒律的柯西(Cauchy)问题,基于E方案构造了一类一致的二阶精确有限差分格式。通过应用Coquel-Le Floch [1]的收敛定理,证明了该方案定义的一系列近似解已经收敛到唯一的熵弱L_∞解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号