首页> 外文期刊>The journal of computational finance >Investment opportunities forecasting: a genetic programming-based dynamic portfolio trading system under a directional-change framework
【24h】

Investment opportunities forecasting: a genetic programming-based dynamic portfolio trading system under a directional-change framework

机译:投资机会预测:方向改变框架下基于遗传程序的动态证券交易系统

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an autonomous effective trading system devoted to the support of decision-making processes in the financial market domain. Genetic programming (GP) has been used effectively as an artificial intelligence technique in the financial field, especially for forecasting tasks in financial markets. In this paper, GP is employed as a means of automatically generating short-term trading rules on financial markets using technical indicators and fundamental parameters. The majority of forecasting tools use a fixed physical timescale, which makes the flow of price fluctuations discontinuous. Therefore, using a fixed physical timescale may expose investors to risks, due to their ignorance of some significant activities. Instead of using fixed timescales for this purpose, the trading rules are generated under a directional-change (DC) event framework. We examine the profitability of the trading systems for the Saudi Stock Exchange, and evaluate the GP forecasting performance under a DC framework through agent-based simulation market index trading. The performance of the forecasting model is compared with a number of benchmark forecasts, namely the buy-and-hold and technical analysis trading strategies. Our numerical results show that the proposed GP model under a DC framework significantly outperforms other traditional models based on fixed physical timescales in terms of portfolio return.
机译:本文提出了一种自主有效的交易系统,专门用于支持金融市场领域的决策过程。遗传编程(GP)在金融领域已被有效地用作人工智能技术,尤其是用于预测金融市场中的任务。本文将GP用作一种使用技术指标和基本参数自动生成金融市场短期交易规则的方法。大多数预测工具使用固定的物理时间尺度,这使得价格波动的流不连续。因此,使用固定的实际时间范围可能会使投资者面临风险,因为他们对某些重要活动不了解。并非为此目的使用固定的时标,而是在方向更改(DC)事件框架下生成交易规则。我们检查了沙特证券交易所交易系统的盈利能力,并通过基于代理的模拟市场指数交易在DC框架下评估了GP预测性能。将预测模型的性能与许多基准预测(即买入持有和技术分析交易策略)进行比较。我们的数值结果表明,在投资组合收益方面,DC框架下的拟议GP模型明显优于其他基于固定物理时间尺度的传统模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号