首页> 外文期刊>Journal of Computational Electronics >A multiple-event propagation model in near-threshold combinational circuits using neural networks
【24h】

A multiple-event propagation model in near-threshold combinational circuits using neural networks

机译:使用神经网络近阈值组合电路的多事件传播模型

获取原文
获取原文并翻译 | 示例

摘要

Near-threshold computing (NTC) is a promising technique to reduce the power consumption of very large-scale integration (VLSI) designs. The continuous reductions in the supply voltage present reliability challenges for modern complementary metal-oxide-semiconductor (CMOS) logic due to the occurrence of soft errors from single-event transients (SETs) and multiple-event transients (METs). A fast yet accurate neural network-based model is presented herein to calculate the soft error rate (SER) in circuits in the near-threshold voltage domain. Recurrent neural networks (RRN) are used to model each gate in a given library. A heuristic method for locating multiple faults and propagating them to the circuit outputs based on these neural network models is also presented. On average, the experimental results show that the SER can be estimated up to 20 times faster compared with HSPICE simulations, with less than 0.2% accuracy loss.
机译:近阈值计算(NTC)是一种有希望的技术,可降低非常大规模集成(VLSI)设计的功耗。 由于单事件瞬态(集)和多次事件瞬变(METS)的软误差发生,电源电压对现代互补金属 - 氧化物半导体(CMOS)逻辑的可靠性挑战的连续减少。 这里介绍了一种快速且准确的神经网络的基于基于网络的模型,以计算近阈值电压域中的电路中的软错误率(SER)。 经常性神经网络(RRN)用于在给定库中模拟每个门。 还提出了一种用于定位多个故障并将它们传播到电路输出的启发式方法,基于这些神经网络模型。 平均而言,实验结果表明,与HSPICE模拟相比,SER可以估计速度快20倍,精度损耗小于0.2%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号