首页> 外文期刊>Journal of Computational Electronics >Efficient ab initio analysis of quantum confinement and band structure effects in ultra-scaled Si_(1-x)Ge_x gate-all-around and fin field-effect transistors for sub-10 nm technology nodes
【24h】

Efficient ab initio analysis of quantum confinement and band structure effects in ultra-scaled Si_(1-x)Ge_x gate-all-around and fin field-effect transistors for sub-10 nm technology nodes

机译:适用于低于10 nm技术节点的超大规模Si_(1-x)Ge_x全方位栅和鳍式场效应晶体管的量子约束和能带结构效应的有效从头算分析

获取原文
获取原文并翻译 | 示例
           

摘要

This paper analyzes the sub-10 nm ultra-scaled Si~(1− x )Ge~( x )fin field-effect transistor (FinFET) and gate-all-around transistor (GAAFET), based on an improved method by combining Slater partial occupation and ab initio density functional theory (DFT). Compared to the existing generalized gradient approximation (GGA) DFT, which is computationally efficient but inaccurate, and the established hybrid functional DFT, which is accurate but computationally demanding, the proposed method achieves both hybrid functional-like high accuracy and GGA-like high computational efficiency concurrently. By using this improved methodology, batch simulations are performed to investigate the size- and composition-dependent quantum confinement and band structure effects in the Si~(1− x )Ge~( x )FinFET and GAAFET. It is shown that the quantum confinement in ultra-scaled FinFET and GAAFET significantly increases the bandgap of Si~(1− x )Ge~( x )channel in the sub-10 nm scale. It is quantitatively demonstrated that, due to its two-dimensional quantum confinement, the ultra-scaled GAAFET has larger confinement-induced bandgap increase, lower direct source-drain quantum tunneling, lower off-state transmission and low-bias conductance, and smaller drain-induced barrier lowering, compared to the FinFET which is confined only in one-dimension. These differences jointly indicate that the ultra-scaled GAAFET could offer better device performance than the ultra-scaled FinFET. It is quantitatively shown that, by reducing the Ge composition of the Si~(1− x )Ge~( x )channel in ultra-scaled FinFET and GAAFET, the bandgap and the threshold gate voltage can be significantly increased; and the transmission coefficients, the low-bias conductance, and the source-drain current can be significantly reduced. These trends can be utilized to optimize device performance by tuning Ge composition in different technology nodes.
机译:本文结合结合Slater的改进方法,分析了亚10纳米以下超尺寸Si〜(1- x)Ge〜(x)fin场效应晶体管(FinFET)和全栅栅极晶体管(GAAFET)部分职业和从头算密度函数理论(DFT)。与现有的计算效率高但不精确的广义梯度近似(DGA)和已建立的精确但计算要求高的混合函数DFT相比,该方法既可以实现混合函数似的高精度,又可以实现类似GGA的高精度计算并发效率。通过使用这种改进的方法,进行批处理仿真以研究在Si〜(1- x)Ge〜(x)FinFET和GAAFET中与尺寸和成分有关的量子限制和能带结构效应。结果表明,超尺寸FinFET和GAAFET中的量子限制在小于10 nm的范围内显着增加了Si〜(1- x)Ge〜(x)沟道的带隙。定量证明,由于其二维量子限制,超大规模GAAFET具有更大的限制引起的带隙增加,更低的直接源极-漏极量子隧穿,更低的截止态传输和低偏置电导率以及更小的漏极与仅限于一维的FinFET相比,可降低势垒。这些差异共同表明,超大规模GAAFET可以提供比超规模FinFET更好的器件性能。定量表明,通过减小超规模FinFET和GAAFET中Si〜(1- x)Ge〜(x)沟道的Ge组成,可以显着提高带隙和阈值栅极电压。传输系数,低偏置电导和源极-漏极电流可以大大降低。通过调整不同技术节点中的Ge组成,可以利用这些趋势来优化设备性能。

著录项

  • 来源
    《Journal of Computational Electronics》 |2018年第4期|1399-1409|共11页
  • 作者单位

    College of Electrical and Information Engineering, Hunan University,National Supercomputing Center in Changsha,TCAD Group, Synopsys Inc,Department of Electrical Engineering, University of Washington;

    College of Electrical and Information Engineering, Hunan University,National Supercomputing Center in Changsha;

    College of Electrical and Information Engineering, Hunan University,National Supercomputing Center in Changsha;

    College of Electrical and Information Engineering, Hunan University,National Supercomputing Center in Changsha;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    FinFET; GAAFET; Quantum confinement; Silicon germanium; Density functional theory; Bandgap;

    机译:FinFET;GAAFET;量子限制;硅锗;密度泛函理论;带隙;

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号