首页> 外文期刊>Journal of complexity >Non-existence of degree bounds for weighted sums of squares representations
【24h】

Non-existence of degree bounds for weighted sums of squares representations

机译:平方和表示的加权和不存在度界

获取原文
获取原文并翻译 | 示例

摘要

Given a fixed family of polynomials h_1, …, h_r ∈R [x_1, …, x_n], we study the problem of representing polynomials in the form f = s_0 + s_1h_1 + … + s_rh_r with sums of squares s_i. Let M be the cone of all f which admit such a representation. The problem is said to be stable if there exists a function φ: N → N such that every f ∈ M has a representation (*) with deg(s_i) ≤ φ (deg(f)). The main result says that if the subset K = {h_1 ≥ 0,…, h_r ≥ 0} of R~n has dimension ≥ 2 and the sequence h_1, … ,h_r has the moment property (MP), then the problem is not stable. In particular, this includes the case where K is compact, dim(K) ≥ 2 and the cone M is multiplicatively closed.
机译:给定一个固定的多项式族h_1,…,h_r∈R[x_1,…,x_n],我们研究用平方和s_i和f = s_0 + s_1h_1 +…+ s_rh_r表示多项式的问题。令M为所有接受这种表示的f的圆锥。如果存在一个函数φ:N→N使得每个f∈M具有deg(s_i)≤φ(deg(f))的表示(*),则认为该问题是稳定的。主要结果表明,如果R〜n的子集K = {h_1≥0,…,h_r≥0}的维数≥2,而序列h_1,…,h_r具有矩属性(MP),则问题不在于稳定。特别地,这包括K紧凑,dim(K)≥2且圆锥M倍增闭合的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号