首页> 外文期刊>Journal of complexity >Spatially adaptive sparse grids for high-dimensional data-driven problems
【24h】

Spatially adaptive sparse grids for high-dimensional data-driven problems

机译:空间自适应稀疏网格,用于解决高维数据驱动的问题

获取原文
获取原文并翻译 | 示例

摘要

Sparse grids allow one to employ grid-based discretization methods in data-driven problems. We present an extension of the classical sparse grid approach that allows us to tackle high-dimensional problems by spatially adaptive refinement, modified ansatz functions, and efficient regularization techniques. The competitiveness of this method is shown for typical benchmark problems with up to 166 dimensions for classification in data mining, pointing out properties of sparse grids in this context. To gain insight into the adaptive refinement and to examine the scope for further improvements, the approximation of non-smooth indicator functions with adaptive sparse grids has been studied as a model problem. As an example for an improved adaptive grid refinement, we present results for an edge-detection strategy.
机译:稀疏网格允许在数据驱动的问题中采用基于网格的离散化方法。我们提出了经典稀疏网格方法的扩展,该方法允许我们通过空间自适应细化,修改的ansatz函数和有效的正则化技术来解决高维问题。这种方法的竞争力表现出了典型的基准问题,在数据挖掘中最多可进行166维分类,指出了这种情况下稀疏网格的属性。为了深入了解自适应细化并检查进一步改进的范围,已将非光滑指标函数与自适应稀疏网格的逼近作为模型问题进行了研究。作为改进的自适应网格细化的示例,我们提出了边缘检测策略的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号