首页> 外文期刊>The Journal of Combinatorial Mathematics and Combinatorial Computing >Non-cubic, edge-critical Hamilton laceable bigraphs with 3m edges on 2 m vertices
【24h】

Non-cubic, edge-critical Hamilton laceable bigraphs with 3m edges on 2 m vertices

机译:非立方体,边缘关键的汉密尔顿重型搭乘2米顶部有3米边缘

获取原文
获取原文并翻译 | 示例

摘要

Constructions are given for non-cubic, edge-critical Hamilton laceable bigraphs with 3m edges on 2m vertices for all m ≥ 4. The significance of this result is that it shows the conjectured hard upper bound of 3m edges for edge-critical bigraphs on 2m vertices is populated by both cubic and non-cubic cases for all m. This is unlike the situation for the hard 3m-edge lower bound for edge-stable bigraphs where the bound is populated exclusively by cubics.
机译:用于非立方体的边缘关键的汉密尔顿覆盖性大型垃圾覆盖物,对于所有M≥4的2M顶点上的3M边缘。该结果的重要性是它显示了2M上的边缘关键型大型倾向的3M边缘的昏暗的硬上限 顶点被所有m的立方和非立方案例填充。 这与用于边缘稳定的大型界限的硬3m边下限的情况不同,其中绑定的完全由立方体填充。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号