首页> 外文期刊>The Journal of Combinatorial Mathematics and Combinatorial Computing >Non-cubic, edge-critical Hamilton laceable bigraphs with 3m edges on 2 m vertices
【24h】

Non-cubic, edge-critical Hamilton laceable bigraphs with 3m edges on 2 m vertices

机译:非三次边线临界汉密尔顿可绑合二部图,在2 m顶点上具有3m边线

获取原文
获取原文并翻译 | 示例

摘要

Constructions are given for non-cubic, edge-critical Hamilton laceable bigraphs with 3m edges on 2m vertices for all m ≥ 4. The significance of this result is that it shows the conjectured hard upper bound of 3m edges for edge-critical bigraphs on 2m vertices is populated by both cubic and non-cubic cases for all m. This is unlike the situation for the hard 3m-edge lower bound for edge-stable bigraphs where the bound is populated exclusively by cubics.
机译:对于所有m≥4,给出了在2m个顶点上具有3m边的非三次边线临界汉密尔顿可绑合图的构造。此结果的重要性在于,它显示了2m上的边临界图的3m边的猜想硬上限所有m的立方和非立方情况都填充了顶点。这与边缘稳定的有向图的硬3m边缘下界的情况不同,在硬下界中,界限仅由三次填充。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号