【24h】

Bounds for Independent Roman Domination in Graphs

机译:图中独立罗马统治的界限

获取原文
获取原文并翻译 | 示例

摘要

A Roman dominating function on a graph G is a function f : V(G) → {0,1,2} such that every vertex u with f(u) = 0 is adjacent to a vertex v with f(v) = 2.The weight of a Roman dominating function f is the value f{V(G)) = ∑_u ∈v(G) f(u). A Roman dominating function f is an independent Roman dominating function if the set of vertices for which f assigns positive values is independent.The independent Roman domination number ir(G) of G is the minimum weight of an independent Roman dominating function of G. We show that if T is a tree of order n, then ir(T) ≤ 4n/5, and characterize the class of trees for which equality holds.We present bounds for i_R(G) in terms of the order, maximum and minimum degree, diameter and girth of G.We also present Nordhaus-Gaddum inequalities for independent Roman domination numbers.
机译:图G上的罗马支配函数是函数f:V(G)→{0,1,2},使得每个f(u)= 0的顶点u与f(v)= 2的顶点v相邻罗马支配函数f的权重为值f {V(G))= ∑_u∈v(G)f(u)。如果f为其指定正值的一组顶点是独立的,则罗马支配函数f是独立的罗马支配函数.G的独立罗马支配数ir(G)是G的独立罗马支配函数的最小权重。证明如果T是n阶的树,则ir(T)≤4n / 5并刻画等式成立的树的类别。我们以阶次,最大和最小度表示i_R(G)的边界,G的直径和周长。我们还给出了独立罗马统治数的Nordhaus-Gaddum不等式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号