首页> 外文期刊>The Journal of Combinatorial Mathematics and Combinatorial Computing >A note on the 3-rainbow index of complete bipartite graphs
【24h】

A note on the 3-rainbow index of complete bipartite graphs

机译:关于完全二部图的3彩虹指数的注记

获取原文
获取原文并翻译 | 示例

摘要

A tree T, in an edge-colored graph G, is called a rainbow tree if no two edges of T are assigned the same color. For a vertex subset S ∈ V(G), a tree that connects 5 in G is called an S-tree. A k-rainbow coloring of G is an edge coloring of G having the property that for every set S of k vertices of G, there exists a rainbow S-tree T in G. The minimum number of colors needed in a k-rainbow coloring of G is the k-rainbow index of G, denoted by rx_k(G). It is NP-hard to compute the rx_k(G) for the general graphs G. We consider the 3-rainbow index of complete bipartite graphs K_(s,t). For 3 ≤ s ≤ t, we have determined the tight bounds of rx_3(K_(s,t))- In this paper, we continue the study. For 2 = s ≤ t, we develop a converse idea and apply with the model of chessboard to study the problem. Finally, we obtain the exact value of rx_3(K_(s,t)) with 2 = s ≤ t.
机译:如果没有为T的两个边缘分配相同的颜色,则在边缘有色的图形G中,树T被称为彩虹树。对于顶点子集S∈V(G),在G中连接5的树称为S树。 G的k彩虹着色是G的边缘着色,具有以下属性:对于G的每k个顶点集合S,G中都存在彩虹S树T。k彩虹着色所需的最小颜色数G的G是G的k彩虹指数,用rx_k(G)表示。为一般图G计算rx_k(G)是NP困难的。我们考虑完整二部图K_(s,t)的3彩虹指数。对于3≤s≤t,我们确定了rx_3(K_(s,t))的紧边界。在本文中,我们继续进行研究。对于2 = s≤t,我们提出了一个相反的想法,并应用了棋盘模型来研究该问题。最后,我们获得2 = s≤t的rx_3(K_(s,t))的精确值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号