首页> 外文会议>Algorithms and complexity >Packing Bipartite Graphs with Covers of Complete Bipartite Graphs
【24h】

Packing Bipartite Graphs with Covers of Complete Bipartite Graphs

机译:用完整的二分图覆盖来包装二分图

获取原文
获取原文并翻译 | 示例

摘要

For a set S of graphs, a perfect S-packing (S-factor) of a graph G is a set of mutually vertex-disjoint subgraphs of G that each are isomorphic to a member of S and that together contain all vertices of G. If G allows a covering (locally bijective homomorphism) to a graph H, then G is an H-cover. For some flxed H let S(H) consist of all H-covers. Let Kk,e be the complete bipartite graph with partition classes of size k and £, respectively. For all fixed k, e ≥ 1, we determine the computational complexity of the problem that tests if a given bipartite graph has a perfect S(Kk,e)-packmg. Our technique is partially based on exploring a close relationship to pseudo-coverings. A pseudo-covering from a graph G to a graph H is a homomorphism from G to H that becomes a covering to H when restricted to a spanning subgraph of G. We settle the computational complexity of the problem that asks if a graph allows a pseudo-covering to Kk,e for all fixed k,e≥l.
机译:对于一组图S,图G的完美S堆积(S因子)是G的一组相互不顶点的子图,每个子图与S的成员同构并且一起包含G的所有顶点。如果G允许覆盖图H(局部双射同态),则G是H覆盖。对于某些固定的H,令S(H)包含所有H覆盖。令Kk,e为分别具有k和partition划分类别的完整二部图。对于所有固定k,e≥1,我们确定测试给定二部图是否具有理想S(Kk,e)-packmg的问题的计算复杂性。我们的技术部分基于探索与伪覆盖的紧密关系。从图G到图H的伪覆盖是从G到H的同态,当限制为G的跨子图时,它变为H的覆盖。我们解决了问图是否允许伪的问题的计算复杂性-对于所有固定的k,e≥l,覆盖到K k,e。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号