首页> 外文期刊>Journal of cognitive engineering and decision making >Understanding Preferences in Experience-Based Choice: A Study of Cognition in the 'Wild'
【24h】

Understanding Preferences in Experience-Based Choice: A Study of Cognition in the 'Wild'

机译:理解基于经验的选择中的偏好:“狂野”中的认知研究

获取原文
获取原文并翻译 | 示例

摘要

The objective of this article is to improve our understanding of preferences in experienced-based choice. Positioned within the framework of naturalistic decision making, this article responds to the recent call to complement the examination of experience-based choice with studies of cognition in the "wild." We document an exploratory field study that uses applied cognitive task analysis (ACTA) to examine financial day traders' preferences. Providing real-world examples, our study illustrates how day traders construct their understanding of gains relative to losses and emphasizes the relevance of prospect theory for understanding the asymmetry of human choice. The fourfold pattern of preferences as studied in the wild is risk seeking for medium- and high-probability gains, risk averse for small-probability gains, risk averse for small-probability losses, and risk averse for medium- and high-probability losses. Our results differ from the fourfold pattern of preferences exhibited by experience-based choice when studied in the laboratory. The implications of this work for prospect theory and the distinction between "experience through learning" and "experience through professional training" are discussed alongside the merits of the ACTA technique for professional expert domain-based knowledge elicitation.
机译:本文的目的是增进我们对基于经验的选择中的偏好的理解。定位在自然主义决策框架内,本文回应了最近的呼吁,即通过“野性”中的认知研究来补充对基于经验的选择的检验。我们记录了一个探索性的野外研究,该研究使用应用认知任务分析(ACTA)来检查金融日交易者的偏好。通过提供真实的例子,我们的研究说明了日间交易者如何构建对收益相对于损失的理解,并强调了前景理论与理解人类选择的不对称性的相关性。在野外研究中,偏好的四重模式是:寻求中高概率收益的风险,针对小概率收益的风险厌恶,针对小概率损失的风险厌恶以及针对中概率和高概率损失的风险厌恶。我们的结果不同于在实验室中进行研究时,基于经验的选择所表现出的偏好的四重模式。讨论了这项工作对前景理论的意义以及“通过学习获得的经验”和“通过专业培训获得的经验”之间的区别,并结合了基于ACTA技术的专业专家基于领域的知识启发技术的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号