首页> 外文期刊>Journal of Cleaner Production >Adsorption and catalytic reduction of rifampicin in wastewaters using hybrid rGO@Fe/Pd nanoparticles
【24h】

Adsorption and catalytic reduction of rifampicin in wastewaters using hybrid rGO@Fe/Pd nanoparticles

机译:用杂交rgo @ Fe / Pd纳米粒子的废水中利福平的吸附和催化还原

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Ubiquitous use of antibiotics worldwide has resulted in their significant efflux into the environment impacting ecosystem health to such a degree that antibiotic removal has become a key environmental issue. Here one target antibiotic, rifampicin, was successfully removed from aqueous solution using a hybrid nanomaterial (rGO@Fe/Pd NP) having an adsorption capacity of 90.9 mg g(-1). The factors influencing rifampicin removal by rGO@Fe/Pd NPs and each constituent component of the hybrid nanomaterial were also investigated. Adsorption and reduction kinetics indicated that rifampicin conformed to a pseudo-second-order model. While X-ray diffraction and Fourier transform infrared spectroscopy showed that rifampicin was adsorbed by rGO@Fe/Pd NPs, scanning electron microscopy and X-ray photoelectron spectroscopy showed that rifampicin was reduced by nano iron and during this process, nano palladium acted as a catalyst. Liquid chromatography-mass spectrometry, confirming that rifampicin was indeed catalytically degraded by rGO@Fe/Pd NPs, as evidenced by a decrease in ion mass ratio from 823.41 (M(+)1H) to 611.21 (M(+)1H) or 606.37 (M(+)1H). A mechanism for rifampicin degradation based on adsorption and catalytic reduction was proposed. In addition, the practical removal efficiency of rifampicin was successfully validated in aquaculture sewage water (71.9%) and for municipal sewage (58.1%). This article provides a strong scientific basis for the degradation mechanism of rifampicin by rGO@Fe/Pd NPs indicating that this hybrid material has great potential for practical applications. (C) 2020 Elsevier Ltd. All rights reserved.
机译:全世界的抗生素无处不在的使用导致他们对环境的显着的影响,影响生态系统健康,以这种程度的抗生素去除已成为一个关键的环境问题。这里使用具有90.9mg g(-1)的吸附容量的杂合纳米材料(RGO @ Fe / Pd NP)从水溶液中成功地除去靶抗生素利福平。还研究了影响RGO @ Fe / Pd NPS和杂化纳米材料的每种组成部分的影响利福平除去的因素。吸附和减少动力学表明利福平符合伪二阶模型。虽然X射线衍射和傅里叶变换红外光谱显示,但是RGO @ Fe / Pd NPS吸附了利福平,扫描电子显微镜和X射线光电子能量显示,纳米铁和在此过程中,纳米钯作用为a催化剂。液相色谱 - 质谱法,证实利福平官方蛋白的催化素由RGO @ Fe / Pd NP催化降解,如离子质量比的降低,从823.41(+)1小时)至611.21(m(+)1h)或606.37 (m(+)1h)。提出了一种基于吸附和催化还原的利福平降解的机制。此外,利福平的实际去除效率在水产养殖污水(71.9%)和市政污水中成功验证(58.1%)。本文为RGO @ Fe / Pd NPS提供了利福平的降解机制的强大科学基础,表明该混合材料具有很大的实际应用潜力。 (c)2020 elestvier有限公司保留所有权利。

著录项

  • 来源
    《Journal of Cleaner Production》 |2020年第10期|121617.1-121617.10|共10页
  • 作者单位

    Fujian Normal Univ Fujian Key Lab Pollut Control & Resource Reuse Sch Environm Sci & Engn Fuzhou 350007 Fujian Peoples R China;

    Univ South Australian Future Ind Inst Environm Contaminants Grp Mawson Lakes SA 5095 Australia;

    Fujian Normal Univ Fujian Key Lab Pollut Control & Resource Reuse Sch Environm Sci & Engn Fuzhou 350007 Fujian Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Degradation; Functional nanomaterials; Mechanism; Rifampicin; Water treatment;

    机译:降解;功能纳米材料;机制;利福平;水处理;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号