首页> 外文期刊>Journal of circuits, systems and computers >A Memetic Algorithm-Based Design Space Exploration for Datapath Resource Allocation During High-Level Synthesis
【24h】

A Memetic Algorithm-Based Design Space Exploration for Datapath Resource Allocation During High-Level Synthesis

机译:基于MECORIC算法的DataPath资源分配在高级合成中的设计空间探索

获取原文
获取原文并翻译 | 示例

摘要

System designers have started adopting high-level synthesis (HLS) for architectural design because of the higher levels of abstraction offered. The HLS tools provide multiple design choices with tradeoff among different design parameters. Design Space Exploration (DSE) involves optimizing the synthesis options to achieve best tradeoffs among the metrics of interest. With the aim of exploring the design space in a feasible amount of time, we present a novel automated DSE approach. In particular, meeting the constraints presented by different parameters of interest is modeled as a multi-objective problem and solved using Memetic algorithm. The effectiveness of different variations of the Memetic algorithm in solving the DSE problem is studied and a Firefly algorithm-based solution is proposed with a novel probabilistic local search mechanism. The proposed approach is compared with existing solutions and the results prove that the proposed approach outperforms both existing solutions and other variations of Memetic algorithms in terms of convergence time and quality of results. In addition to that, a case study has been included to demonstrate the applicability of the approach. Results show that the proposed approach achieves a 33% improvement in cost, 10 x improvement in speed and 4x improvement in hypervolume.
机译:由于提供的抽象级别更高,系统设计人员已经开始采用高级合成(HLS)进行建筑设计。 HLS工具提供多种设计选择,具有不同的设计参数之间的权衡。设计空间探索(DSE)涉及优化综合选项,以在感兴趣的指标中获得最佳权衡。目的是在可行的时间内探索设计空间,我们提出了一种新颖的自动化DSE方法。特别地,满足不同的感兴趣参数所呈现的约束被建模为多目标问题并使用迭代算法解决。研究了解决DSE问题的麦克算法的不同变化的有效性,并提出了一种基于萤火虫算法的解决方案,具有新的概率本地搜索机制。该提出的方法与现有的解决方案进行了比较,结果证明,该方法在收敛时间和结果质量方面占据了现有解决方案和麦克酸算法的其他变化。除此之外,还包括案例研究以证明该方法的适用性。结果表明,该拟议的方法达到了33%的成本提高,速度和4倍改善的高速提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号