首页> 外文期刊>Journal of circuits, systems and computers >Test Sample Oriented Dictionary Learning for Face Recognition
【24h】

Test Sample Oriented Dictionary Learning for Face Recognition

机译:面向测试样本的字典学习用于人脸识别

获取原文
获取原文并翻译 | 示例

摘要

Dictionary learning (DL) algorithms have shown very good performance in face recognition. However, conventional DL algorithms exploit only the training samples to obtain the dictionary and totally neglect the test sample in the learning procedure. As a result, if DL is associated with the linear representation of test sample, DL may be able to perform better in classifying the test samples than conventional DL algorithms. In this paper, we propose a test sample oriented dictionary learning (TSODL) algorithm for face recognition. We combine the linear representation (including the l(0)-norm, l(1)-norm and l(2)-norm) of a test sample and the basic model of DL to learn a single dictionary for each test sample. Thus, it can simultaneously obtain the dictionary and representation coefficients of the test sample by minimizing only one objective function. In order to make the learning procedure more efficient, we initialize a dictionary for the new test sample by selecting from the dictionaries of previous test samples. The experimental results show that the TSODL algorithm can classify test samples more accurately than some of the state-of-the-art DL and sparse coding algorithms by using a linear classifier method on three public face databases.
机译:字典学习(DL)算法在人脸识别方面显示出非常好的性能。但是,传统的DL算法仅利用训练样本来获得字典,而在学习过程中完全忽略了测试样本。结果,如果DL与测试样本的线性表示相关联,则DL在分类测试样本方面可能会比常规DL算法表现更好。在本文中,我们提出了一种面向样本的面向字典学习(TSODL)的人脸识别算法。我们将测试样本的线性表示形式(包括l(0)-范数,l(1)-范数和l(2)-范数)与DL的基本模型结合起来,以为每个测试样本学习单个词典。因此,它可以通过仅使一个目标函数最小化而同时获得测试样本的字典系数和表示系数。为了使学习过程更有效,我们通过从先前测试样本的字典中进行选择来初始化新测试样本的字典。实验结果表明,通过使用线性分类器方法在三个公开的人脸数据库上,TSODL算法可以比某些最新的DL和稀疏编码算法更准确地对测试样本进行分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号