...
首页> 外文期刊>Journal of the Chinese Society of Mechanical Engineers. Series C >Large-Angle Attitude Control of Spacecraft with Structure Spillover
【24h】

Large-Angle Attitude Control of Spacecraft with Structure Spillover

机译:具有结构溢出的航天器大角度姿态控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a nonlinear control design procedure is proposed for general attitude reorientation of a spacecraft with flexible structures. The method of input-output feedback linearization and Lyapunov stability analysis are the main tools incorporated in this procedure to design an asymptotically stable feedback control law. The spacecraft attitude is considered to be confined to the surface of a four-dimensional sphere centered at the origin of the four-dimensional Euler-parameter space. Instead of forming an attitude transformation relation, the direct subtraction of attitude vector from present to final orientation is utilized. Through feedback linearization, dynamics of the attitude errors is derived as a second-order linear ordinary differential matrix equation and constant coefficients of the equation become the gain matrices of the attitude control law. Stabilization of the nexible structures in the form of adaptive damping is also derived Lyapunov stability analysis and becomes a part of the attitude feedback control law. Overall stability of the attitude control can also be achieved by tuning the control gains obtained in the analysis. The uniqueness of the proposed design approach is that it requires only three independent control torques on the hub. High-frequency modes are added to the system as unmodeled dynamics. Simulation results indicate that the uncontrolled high frequency modes will be excited and cannot be eliminated as the controller receives no direct information on the motions. However, the spacecraft will reach the desired attitude with modeled low-frequency modes stabilized and the spillover of unmodeled high-frequency modes remain bounded.
机译:在本文中,提出了一种非线性控制设计程序,用于挠性结构航天器的一般姿态重新定向。输入-输出反馈线性化方法和Lyapunov稳定性分析是此过程中用于设计渐近稳定反馈控制律的主要工具。航天器的姿态被认为仅限于以三维欧拉参数空间的原点为中心的三维球体的表面。代替形成姿态变换关系,利用从当前取向到最终取向的姿态矢量的直接减法。通过反馈线性化,将姿态误差的动力学导出为二阶线性常微分矩阵方程,该方程的常数系数成为姿态控制律的增益矩阵。 Lyapunov稳定性分析也得出了自适应阻尼形式的可微结构的稳定性,并成为姿态反馈控制律的一部分。姿态控制的整体稳定性也可以通过调整分析中获得的控制增益来实现。所提出的设计方法的独特之处在于,它仅需要轮毂上的三个独立控制扭矩。高频模式作为未建模的动力学添加到系统中。仿真结果表明,由于控制器未收到有关运动的直接信息,不受控制的高频模式将被激发并且无法消除。但是,航天器将在稳定的建模低频模式下达到期望的姿态,并且未建模的高频模式的溢出范围仍然有限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号