首页> 外文期刊>Journal of building performance simulation >Bayesian calibration at the urban scale: a case study on a large residential heating demand application in Amsterdam
【24h】

Bayesian calibration at the urban scale: a case study on a large residential heating demand application in Amsterdam

机译:城市规模的贝叶斯校准 - 以阿姆斯特丹大型住宅供热应用为例

获取原文
获取原文并翻译 | 示例

摘要

A bottom-up building energy modelling at the urban scale based on Geographic Information System and semantic 3D city models can provide quantitative insights to tackle critical urban energy challenges. Nevertheless, incomplete information is a common obstacle to produce reliable modelling results. The residential building heating demand simulation performance gap caused by input uncertainties is discussed in this study. We present a data-driven urban scale energy modelling framework from open-source data harmonization, sensitivity analysis, heating demand simulation at the postcode level to Bayesian calibration with six years of training data and two years of validation data. Comparing the baseline and the calibrated simulation results, the averaged absolute percentage errors of energy use intensity in the study area have significantly improved from 25.0% to 8.3% and from 19.9% to 7.7% in two validation years, while and . The overall methodology is extendable to other urban contexts.
机译:基于地理信息系统和语义3D城市模型的城市规模的自下而上的建筑能源建模可以提供定量洞察,以解决危急城市能源挑战。然而,不完整的信息是产生可靠的建模结果的常见障碍。本研究讨论了由输入不确定性引起的居住建筑物加热需求模拟性能差距。我们介绍了一种数据驱动的城市规模能源建模框架,从开源数据协调,敏感性分析,加热需求模拟,六年培训数据和两年的验证数据校准到贝叶斯校准。比较基线和校准的仿真结果,研究区域的能量使用强度的平均绝对百分比误差从25.0%显着提高到8.3%,从两个验证年份的19.9%到7.7%,而且。整体方法可以延伸到其他城市背景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号