首页> 外文期刊>Journal of building performance simulation >Integrating robustness indicators into multi-objective optimization to find robust optimal low-energy building designs
【24h】

Integrating robustness indicators into multi-objective optimization to find robust optimal low-energy building designs

机译:将稳健性指标集成到多目标优化中,以寻找强大的最佳低能量建筑设计

获取原文
获取原文并翻译 | 示例

摘要

Uncertainties can have a large influence on building performance and cause deviations between predicted performance and performance during operation. It is therefore important to quantify this influence and identify robust designs that have potential to deliver the desired performance under uncertainties. Generally, robust building designs are identified by assessing the performance of multiple design configurations under various uncertainties. When exploring a large design space, this approach becomes computationally expensive and infeasible in practice. Therefore, we propose a simulation framework based on multi-objective optimization and sampling strategies to find robust optimal designs at low computational costs. The genetic algorithm parameters of optimization are fine tuned to further enhance the computational efficiency. Furthermore, a modified fitness function is implemented to use minimax regret robustness method in the optimization loop. The implemented simulation framework can save up to 94-99% of computational time compared to full factorial approach, while identifying the same robust designs.
机译:不确定因素对建筑物的性能产生很大影响,并在运行期间导致预测性能和性能之间的偏差。因此,重要的是要量化这种影响并确定具有潜力在不确定因素下提供所需性能的强大设计。通常,通过在各种不确定性下评估多种设计配置的性能来识别鲁棒建筑设计。在探索大型设计空间时,这种方法在实践中变得昂贵且不可行。因此,我们提出了一种基于多目标优化和采样策略的仿真框架,以寻找低计算成本的强大最优设计。优化的遗传算法参数是微调的,以进一步提高计算效率。此外,实现了修改的健身功能以在优化循环中使用Minimax遗憾的鲁棒性方法。与完整的因子方法相比,所实施的仿真框架可以节省高达94-99%的计算时间,同时识别相同的强大设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号