首页> 外文期刊>Journal of Automated Reasoning >Categoricity Results and Large Model Constructions for Second-Order ZF in Dependent Type Theory
【24h】

Categoricity Results and Large Model Constructions for Second-Order ZF in Dependent Type Theory

机译:相依类型理论的二阶ZF的分类结果和大型模型构造

获取原文
获取原文并翻译 | 示例

摘要

We formalise second-order ZF set theory in the dependent type theory of Coq. Assuming excluded middle, we prove Zermelo's embedding theorem for models, categoricity in all cardinalities, and the categoricity of extended axiomatisations fixing the number of Grothendieck universes. These results are based on an inductive definition of the cumulative hierarchy eliminating the need for ordinals and set-theoretic transfinite recursion. Following Aczel's sets-as-trees interpretation, we give a concise construction of an intensional model of second-order ZF with a weakened replacement axiom. Whereas this construction depends on no additional logical axioms, we obtain intensional and extensional models with full replacement assuming a description operator for trees and a weak form of proof irrelevance. In fact, these assumptions yield large models with n Grothendieck universes for every number n.
机译:我们将二阶ZF集理论形式化为Coq的依存类型理论。假设排除了中间点,我们证明了模型的Zermelo嵌入定理,所有基数的分类性以及固定格洛腾迪克宇宙数量的扩展公理化的分类性。这些结果基于对累积层次结构的归纳定义,从而消除了对序数和集理论超限递归的需求。按照Aczel的“树为集”的解释,我们给出了带有弱替代公理的二阶ZF内涵模型的简洁构造。尽管此构造不依赖于其他逻辑公理,但我们获得了内涵和扩展模型,并假设树的描述算子和弱无关紧要的证明形式完全替换。实际上,这些假设产生的大型模型每个数字n都有n个Grothendieck宇宙。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号