首页> 外文期刊>Journal of Automated Reasoning >An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic
【24h】

An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic

机译:无插值Presburger算法的插值后续演算

获取原文
获取原文并翻译 | 示例

摘要

Craig interpolation has become a versatile tool in formal verification, used for instance to generate program assertions that serve as candidates for loop invariants. In this paper, we consider Craig interpolation for quantifier-free Presburger arithmetic (QFPA). Until recently, quantifier elimination was the only available interpolation method for this theory, which is, however, known to be potentially costly and inflexible. We introduce an interpolation approach based on a sequent calculus for QFPA that determines interpolants by annotating the steps of an unsatisfiability proof with partial interpolants. We prove our calculus to be sound and complete. We have extended the Princess theorem prover to generate interpolating proofs, and applied it to a large number of publicly available Presburger arithmetic benchmarks. The results document the robustness and efficiency of our interpolation procedure. Finally, we compare the procedure against alternative interpolation methods, both for QFPA and linear rational arithmetic.
机译:Craig插值已成为形式验证中的通用工具,例如用于生成程序断言,以用作循环不变式的候选者。在本文中,我们考虑将克雷格插值用于无量词的Presburger算法(QFPA)。直到最近,量词消除还是该理论唯一可用的插值方法,但是,众所周知,这种方法可能代价高昂且缺乏灵活性。我们针对QFPA引入了基于顺序演算的插值方法,该方法通过使用部分插值来注释不满足证明的步骤来确定插值。我们证明我们的演算是正确和完整的。我们扩展了公主定理证明者以生成插值证明,并将其应用于大量公开可用的Presburger算术基准。结果证明了我们插值过程的鲁棒性和效率。最后,针对QFPA和线性有理算术,我们将程序与替代插值方法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号