首页> 外文期刊>ACM transactions on computational logic >Quantifier-Free Interpolation in Combinations of Equality Interpolating Theories
【24h】

Quantifier-Free Interpolation in Combinations of Equality Interpolating Theories

机译:等式内插理论组合中的无量词内插

获取原文
获取原文并翻译 | 示例

摘要

The use of interpolants in verification is gaining more and more importance. Since theories used in applications are usually obtained as (disjoint) combinations of simpler theories, it is important to modularly reuse interpolation algorithms for the component theories. We show that a sufficient and necessary condition to do this for quantifier-free interpolation is that the component theories have the strong (sub-)amalgamation property. Then, we provide an equivalent syntactic characterization and show that such characterization covers most theories commonly employed in verification. Finally, we design a combined quantifier-free interpolation algorithm capable of handling both convex and nonconvex theories; this algorithm subsumes and extends most existing work on combined interpolation.
机译:在验证中使用内插器变得越来越重要。由于在应用程序中使用的理论通常是作为较简单理论的(不相交)组合而获得的,因此对于组件理论而言,模块化重用插值算法非常重要。我们证明,对于无量词插值而言,执行此操作的充分必要条件是组件理论具有强大的(子)融合特性。然后,我们提供了等效的句法表征,并表明这种表征涵盖了验证中通常使用的大多数理论。最后,我们设计了一种组合的无量词插值算法,能够同时处理凸和非凸理论。该算法包含并扩展了有关组合插值的大多数现有工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号