首页> 外文期刊>Journal of Automated Reasoning >Portfolios in Stochastic Local Search: Efficiently Computing Most Probable Explanations in Bayesian Networks
【24h】

Portfolios in Stochastic Local Search: Efficiently Computing Most Probable Explanations in Bayesian Networks

机译:随机局部搜索中的投资组合:有效计算贝叶斯网络中最可能的解释

获取原文

摘要

Portfolio methods support the combination of different algorithms and heuristics, including stochastic local search (SLS) heuristics, and have been identified as a promising approach to solve computationally hard problems. While successful in experiments, theoretical foundations and analytical results for portfolio-based SLS heuristics are less developed. This article aims to improve the understanding of the role of portfolios of heuristics in SLS. We emphasize the problem of computing most probable explanations (MPEs) in Bayesian networks (BNs). Algorithmically, we discuss a portfolio-based SLS algorithm for MPE computation, Stochastic Greedy Search (SGS). SGS supports the integration of different initialization operators (or initialization heuristics) and different search operators (greedy and noisy heuristics), thereby enabling new analytical and experimental results. Analytically, we introduce a novel Markov chain model tailored to portfolio-based SLS algorithms including SGS, thereby enabling us to analytically form expected hitting time results that explain empirical run time results. For a specific BN, we show the benefit of using a homogenous initialization portfolio. To further illustrate the portfolio approach, we consider novel additive search heuristics for handling determinism in the form of zero entries in conditional probability tables in BNs. Our additive approach adds rather than multiplies probabilities when computing the utility of an explanation. We motivate the additive measure by studying the dramatic impact of zero entries in conditional probability tables on the number of zero-probability explanations, which again complicates the search process. We consider the relationship between MAXSAT and MPE, and show that additive utility (or gain) is a generalization, to the probabilistic setting, of MAXSAT utility (or gain) used in the celebrated GSAT and WalkSAT algorithms and their descendants. Utilizing our Markov chain framework, we show that expected hitting time is a rational function—i.e. a ratio of two polynomials—of the probability of applying an additive search operator. Experimentally, we report on synthetically generated BNs as well as BNs from applications, and compare SGS's performance to that of Hugin, which performs BN inference by compilation to and propagation in clique trees. On synthetic networks, SGS speeds up computation by approximately two orders of magnitude compared to Hugin. In application networks, our approach is highly competitive in Bayesian networks with a high degree of determinism. In addition to showing that stochastic local search can be competitive with clique tree clustering, our empirical results provide an improved understanding of the circumstances under which portfolio-based SLS outperforms clique tree clustering and vice versa.
机译:组合方法支持不同算法和启发式方法的组合,包括随机局部搜索(SLS)启发式方法,并且已被认为是解决计算难题的有前途的方法。尽管在实验中取得了成功,但基于投资组合的SLS启发式算法的理论基础和分析结果却很少得到开发。本文旨在增进对启发式投资组合在SLS中的作用的理解。我们强调计算贝叶斯网络(BN)中最可能的解释(MPE)的问题。在算法上,我们讨论了用于MPE计算的基于投资组合的SLS算法,即随机贪婪搜索(SGS)。 SGS支持集成不同的初始化运算符(或初始化启发式)和不同的搜索运算符(贪婪和嘈杂的启发式),从而实现新的分析和实验结果。在分析上,我们引入了一个新的马尔可夫链模型,该模型适合于基于投资组合的SLS算法(包括SGS),从而使我们能够分析性地形成预期的命中时间结果,从而解释经验运行时间结果。对于特定的BN,我们展示了使用同质初始化组合的好处。为了进一步说明投资组合方法,我们考虑了新颖的加法搜索启发式方法,以处理BN中条件概率表中零项的形式确定性。在计算解释的效用时,我们的加法方法会增加而不是乘以概率。我们通过研究条件概率表中零条目对零概率解释数量的巨大影响来激发加性测度,这又使搜索过程复杂化。我们考虑了MAXSAT和MPE之间的关系,并表明加性效用(或增益)是著名的GSAT和WalkSAT算法及其后代中使用的MAXSAT效用(或增益)的概化。利用我们的马尔可夫链框架,我们证明预期的击球时间是一个合理的函数,即两个多项式的比率-应用加法搜索算符的概率。通过实验,我们报告了合成生成的BN以及来自应用程序的BN,并将SGS的性能与Hugin的性能进行了比较,后者通过对树的编译和传播来执行BN推断。与Hugin相比,在合成网络上,SGS将计算速度提高了大约两个数量级。在应用程序网络中,我们的方法在具有高度确定性的贝叶斯网络中具有很高的竞争力。除了显示随机局部搜索可以与集团树聚类竞争之外,我们的经验结果还提供了对基于组合SLS优于集团树聚类(反之亦然)的环境的更好理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号