首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Initialization and Restart in Stochastic Local Search: Computing a Most Probable Explanation in Bayesian Networks
【24h】

Initialization and Restart in Stochastic Local Search: Computing a Most Probable Explanation in Bayesian Networks

机译:随机本地搜索中的初始化和重新启动:计算贝叶斯网络中最可能的解释

获取原文
获取原文并翻译 | 示例

摘要

For hard computational problems, stochastic local search has proven to be a competitive approach to finding optimal or approximately optimal problem solutions. Two key research questions for stochastic local search algorithms are: Which algorithms are effective for initialization? When should the search process be restarted? In the present work, we investigate these research questions in the context of approximate computation of most probable explanations (MPEs) in Bayesian networks (BNs). We introduce a novel approach, based on the Viterbi algorithm, to explanation initialization in BNs. While the Viterbi algorithm works on sequences and trees, our approach works on BNs with arbitrary topologies. We also give a novel formalization of stochastic local search, with focus on initialization and restart, using probability theory and mixture models. Experimentally, we apply our methods to the problem of MPE computation, using a stochastic local search algorithm known as Stochastic Greedy Search. By carefully optimizing both initialization and restart, we reduce the MPE search time for application BNs by several orders of magnitude compared to using uniform at random initialization without restart. On several BNs from applications, the performance of Stochastic Greedy Search is competitive with clique tree clustering, a state-of-the-art exact algorithm used for MPE computation in BNs.
机译:对于硬计算问题,事实证明,随机局部搜索是一种寻找最佳或近似最佳问题解的竞争方法。随机局部搜索算法的两个关键研究问题是:哪些算法对初始化有效?什么时候应该重新开始搜索过程?在当前的工作中,我们在贝叶斯网络(BNs)中最可能的解释(MPE)的近似计算的背景下调查这些研究问题。我们介绍一种基于Viterbi算法的新颖方法来解释BN中的初始化。尽管维特比算法适用于序列和树,但我们的方法适用于具有任意拓扑的BN。我们还使用概率论和混合模型给出了一种新颖的随机局部搜索形式化,重点是初始化和重新启动。在实验上,我们使用称为随机贪婪搜索的随机局部搜索算法将方法应用于MPE计算问题。通过仔细优化初始化和重新启动,与在不重新启动的情况下使用统一初始化相比,我们将应用BN的MPE搜索时间减少了几个数量级。在一些应用中的BN上,随机贪婪搜索的性能与集团树聚类竞争,后者是用于BN中MPE计算的最先进的精确算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号