首页> 外文期刊>Journal of Applied Physics >On the influence of loading profile upon the tensile failure of stainless steel
【24h】

On the influence of loading profile upon the tensile failure of stainless steel

机译:载荷分布对不锈钢拉伸破坏的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A material placed in direct contact with a high explosive experiences a Taylor wave (triangular-shaped) shock loading profile. While a large number of studies have probed the structure, properties, and tensile response of materials subjected to square-topped shock loading pulses histories, few studies have systematically quantified the influence of shock-wave profile shape on material response. Samples of 316L stainless steel were shock loaded to peak stresses of 6.6, 10.2, and 14.5 GPa to examine the influence of square-topped and triangular (Taylor wave)-shaped pulse loading on the dynamic tensile behavior (spallation). The 316L SS samples were loaded with a square-topped pulse to each peak shock stress, using a pulse duration of 0.9 μs. They displayed increasing incipient spallation damage with increasing peak stress. Samples loaded to the peak shock stresses of 6.6 and 10.2 GPa with a Taylor-wave loading pulse (which immediately unloads the sample after the peak Hugoniot stress is achieved) exhibited no damage. Only the 14.5 GPa Taylor pulse shocked sample exhibited both a pull-back signal and incipient damage following tensile loading. The damage evolution in the square-topped shocked samples was found to be a mixture of void and strain localization damage, the void fraction increasing with peak shock amplitude. With the Taylor-wave loading profile of amplitude 14.5 GPa, a high incidence of shear localization and low incidence of void formation was observed. Detailed analysis of the damage evolution as a function of shock pulse shape revealed that a nominally equivalent level of incipient damage was obtained using a Taylor-wave or square-topped loading pulse when a similar rear sample surface stress-time total impulse was applied. In order to induce equivalent damage with the two pulse shapes, the impulse applied needed to be nominally matched. For this to occur, the Taylor-wave profile required twice the amplitude of the square one and the durations of each pulse needed to be appropriately scaled. Detailed metallographic, microtextural, and void shape and size analyses of the damage evolution are presented as a function of the inferred loading pulse shape and the peak Hugoniot stress.
机译:直接与高爆炸物接触的材料会经历泰勒波(三角形)的冲击载荷曲线。虽然大量研究探讨了经受方顶冲击载荷脉冲历史的材料的结构,性能和拉伸响应,但很少有研究系统地量化冲击波轮廓形状对材料响应的影响。对316L不锈钢样品施加冲击载荷,使其峰值应力分别为6.6、10.2和14.5 GPa,以检查方顶形和三角形(泰勒波)形脉冲载荷对动态拉伸行为(熔断)的影响。使用0.9μs的脉冲持续时间向316L SS样品加载方顶脉冲至每个峰值冲击应力。随着峰值应力的增加,它们显示出初期的剥落破坏。使用泰勒波加载脉冲加载到6.6和10.2 GPa的峰值冲击应力的样品(在达到Hugoniot峰值应力后立即卸载样品)没有损坏。在拉伸载荷之后,只有14.5 GPa泰勒脉冲冲击的样品同时显示出回拉信号和初期损坏。发现方顶冲击试样的损伤演化是空隙和应变局部损伤的混合物,空隙分数随峰值冲击幅度而增加。在振幅为14.5 GPa的泰勒波荷载分布图中,观察到剪切局部化的高发生率和空隙形成的低发生率。损伤演化作为冲击脉冲形状的函数的详细分析显示,当施加相似的后部样品表面应力-时间总脉冲时,使用泰勒波或方顶加载脉冲可获得名义上相等的初期损伤水平。为了对两个脉冲形状产生同等的损坏,需要对施加的脉冲进行名义上的匹配。为此,泰勒波剖面需要两倍于平方平方的幅度,并且每个脉冲的持续时间都需要适当缩放。详细介绍了损伤演变的金相,微观组织和空洞形状及大小分析,它们是推断的加载脉冲形状和峰值Hugoniot应力的函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号