...
首页> 外文期刊>Journal of Applied Physics >Intragrain defects in polycrystalline silicon layers grown by aluminum-induced crystallization and epitaxy for thin-film solar cells
【24h】

Intragrain defects in polycrystalline silicon layers grown by aluminum-induced crystallization and epitaxy for thin-film solar cells

机译:通过铝诱导的结晶和外延生长的薄膜太阳能电池在多晶硅层中的晶粒内缺陷

获取原文
获取原文并翻译 | 示例

摘要

Polycrystalline silicon (pc-Si) thin-films with a grain size in the range of 0.1 -100 μm grown on top of inexpensive substrates are economical materials for semiconductor devices such as transistors and solar cells and attract much attention nowadays. For pc-Si, grain size enlargement is thought to be an important parameter to improve material quality and therefore device performance. Aluminum-induced crystallization (AIC) of amorphous Si in combination with epitaxial growth allows achieving large-grained pc-Si layers on nonsilicon substrates. In this work, we made pc-Si layers with variable grain sizes by changing the crystallization temperature of the AIC process in order to see if larger grains indeed result in better solar cells. Solar cells based on these layers show a performance independent of the grain size. Defect etching and electron beam induced current (EBIC) measurements showed the presence of a high density of electrically active intragrain defects. We therefore consider them as the reason for the grain size independent device performance. Besides dislocations and stacking faults, also 23 boundaries were electrically active as shown by combining electron backscattered diffraction with EBIC measurements. The electrical activity of the defects is probably triggered by impurity decoration. Plasma hydrogenation changed the electrical behavior of the defects, as seen by photoluminescence, but the defects were not completely passivated as shown by EBIC measurements. In order to reveal the origin of the defects, cross section transmission electron microscopy measurements were done showing that the intragrain defects are already present in the AIC seed layer and get copied into the epitaxial layer during epitaxial growth. The same types of intragrain defects were found in layers made on different substrates (alumina ceramic, glass ceramic, and oxidized silicon wafer) from which we conclude that intragrain defects are not related to the relatively rough alumina ceramic substrates often used in combination with high temperature epitaxy. Further improvement of the material quality, and hence device performance, is therefore not simply achieved by increasing the grain size, but the intragrain quality of the material also needs to be taken into account. For pc-Si layers based on AIC and epitaxial growth, the seed layer has a crucial impact on the intragrain defect formation.
机译:在便宜的衬底上生长的晶粒尺寸在0.1 -100μm范围内的多晶硅(pc-Si)薄膜是用于半导体器件(例如晶体管和太阳能电池)的经济材料,并在当今引起了广泛关注。对于pc-Si,晶粒尺寸增大被认为是提高材料质量并因此改善器件性能的重要参数。铝诱导的非晶硅结晶(AIC)与外延生长相结合,可以在非硅衬底上实现大晶粒pc-Si层。在这项工作中,我们通过改变AIC工艺的结晶温度来制造具有可变晶粒尺寸的pc-Si层,以查看更大的晶粒是否确实导致了更好的太阳能电池。基于这些层的太阳能电池表现出与晶粒尺寸无关的性能。缺陷蚀刻和电子束感应电流(EBIC)测量表明存在高密度的电活性晶粒内缺陷。因此,我们认为它们是与晶粒尺寸无关的器件性能的原因。除了位错和堆垛层错,通过结合电子反向散射衍射和EBIC测量,还显示出23个边界是电活跃的。缺陷的电活动可能是由杂质装饰引起的。如通过光致发光所见,等离子体氢化改变了缺陷的电学行为,但是如EBIC测量所示,缺陷并未被完全钝化。为了揭示缺陷的来源,进行了横截面透射电子显微镜测量,结果表明晶粒内缺陷已经存在于AIC种子层中,并在外延生长期间被复制到外延层中。在不同基板(氧化铝陶瓷,玻璃陶瓷和氧化硅晶片)上制成的层中发现了相同类型的晶粒内缺陷,从中我们得出结论,晶粒内缺陷与经常与高温结合使用的相对粗糙的氧化铝陶瓷基板无关外延。因此,不仅仅通过增加晶粒尺寸就可以进一步提高材料质量,进而改善器件性能,而且还必须考虑材料的颗粒内质量。对于基于AIC和外延生长的pc-Si层,种子层对晶粒内缺陷的形成具有至关重要的影响。

著录项

  • 来源
    《Journal of Applied Physics 》 |2009年第11期| 114507.1-114507.11| 共11页
  • 作者单位

    IMEC vzw, Kapeldreef 75, B-3001 Leuven, Belgium;

    IMEC vzw, Kapeldreef 75, B-3001 Leuven, Belgium;

    IMEC vzw, Kapeldreef 75, B-3001 Leuven, Belgium;

    K. U. Leuven, Celestijnenlaan 200d-mailbox 2414, B-3001 Leuven, Belgium;

    K. U. Leuven, Celestijnenlaan 200d-mailbox 2414, B-3001 Leuven, Belgium;

    IMEC vzw, Kapeldreef 75, B-3001 Leuven, Belgium;

    IMEC vzw, Kapeldreef 75, B-3001 Leuven, Belgium;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号