首页> 外文会议>35th IEEE Photovoltaic Specialists Conference >Thin-film polycrystalline silicon solar cells with low intragrain defect density made via laser crystallization and epitaxial growth
【24h】

Thin-film polycrystalline silicon solar cells with low intragrain defect density made via laser crystallization and epitaxial growth

机译:通过激光结晶和外延生长制成的具有低晶粒内缺陷密度的薄膜多晶硅太阳能电池

获取原文

摘要

The case for thin-film polycrystalline silicon (pc-Si) solar cells is strong as it combines the cost benefit of thin-films and the quality potential of crystalline Si technology. The challenge is in making high-quality pc-Si layers on non-Si substrates. By studying layers based on aluminum-induced crystallization (AIC) we previously showed that electrically active intragrain defects are a major limiting factor for thin-film polycrystalline silicon solar cells. This paper investigates the use of a recently proposed novel scanning-laser based mixed-phase solidification (MPS) process which results in large grains with a low intragrain defect density, as well as a narrow grain size distribution and strong surface crystallographic texture [6]. Through subsequent epitaxial growth, absorber layers with the desired doping and thickness can be obtained. Defect etching and TEM measurements demonstrate the drastically decreased intragrain defect density compared to the AIC-based samples. The most efficient solar cell so far has an energy conversion efficiency of 5.4% and open circuit voltage (Voc) of around 500mV. From the preliminary results obtained, we conclude that mixed phase solidification is an attractive technique to crystallize seed layers for thin-film silicon solar cells.
机译:薄膜多晶硅(pc-Si)太阳能电池的外壳非常坚固,因为它结合了薄膜的成本优势和晶体硅技术的质量潜力。挑战在于在非Si衬底上制造高质量的pc-Si层。通过研究基于铝诱导结晶(AIC)的层,我们先前表明,电活性晶粒内缺陷是薄膜多晶硅太阳能电池的主要限制因素。本文研究了最近提出的新型基于扫描激光的混合相凝固(MPS)工艺的使用,该工艺可导致晶粒大,晶粒内缺陷密度低,晶粒尺寸分布窄,表面晶体学纹理强[6]。 。通过随后的外延生长,可以获得具有期望的掺杂和厚度的吸收体层。与基于AIC的样品相比,缺陷蚀刻和TEM测量表明晶粒内缺陷密度大大降低。迄今为止,最高效的太阳能电池的能量转换效率为5.4%,开路电压(V oc )约为500mV。根据获得的初步结果,我们得出结论,混合相固化是使薄膜硅太阳能电池晶种层结晶的一种有吸引力的技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号