首页> 外文期刊>Journal of Applied Physics >Mobility of oxygen vacancy in SrTiO3 and its implications for oxygen-migration-based resistance switching
【24h】

Mobility of oxygen vacancy in SrTiO3 and its implications for oxygen-migration-based resistance switching

机译:SrTiO3中氧空位的迁移及其对基于氧迁移的电阻转换的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Capacitance—voltage characteristics of high quality Pt Schottky diodes fabricated on oxygen-vacancy-doped SrTiO3 single crystals were used to obtain the oxygen vacancy profiles within one microns of the Pt interface. Computer simulations based on solving the drift-diffusion equations for electrons and ionized vacancies were performed to understand the experimentally observed oxygen vacancy profile's time-evolution at room temperature and 0 V applied bias. Building upon this understanding, the diode's room temperature profile evolution under —35 V applied bias was analyzed to yield a vacancy mobility value of 1.5 x 10"13 cm2/Vs at an electric field of 500 kV/cm. This mobility is 8 orders of magnitude too low to produce nanosecond resistance switching in thin film devices. The applicability of the results to oxygen-migration-based resistance switching is discussed relative to recent observations and modeling.
机译:使用在掺有氧空位的SrTiO3单晶上制造的高质量Pt肖特基二极管的电容-电压特性来获得Pt界面一微米内的氧空位分布。进行了基于求解电子和离子空位的漂移扩散方程的计算机模拟,以了解在室温和0 V施加的偏压下实验观察到的氧空位分布的时间演化。在此基础上,分析了在-35 V施加的偏压下二极管的室温分布演变,在500 kV / cm的电场下产生的空位迁移率值为1.5 x 10“ 13 cm2 / Vs。此迁移率约为8个数量级。数值太低而无法在薄膜器件中产生纳秒级的电阻切换,相对于最近的观察和建模,讨论了该结果对基于氧迁移的电阻切换的适用性。

著录项

  • 来源
    《Journal of Applied Physics》 |2011年第3期|p.993-1000|共8页
  • 作者单位

    Materials Science and Engineering Department, Carnegie Mellon University, 5000 Forbes Ave.,Pittsburgh, Pennsylvania 15213, USA;

    Electrical and Computer Engineering Department, Carnegie Mellon University, 5000 Forbes Ave.,Pittsburgh, Pennsylvania 15213, USA;

    Materials Science and Engineering Department, Carnegie Mellon University, 5000 Forbes Ave.,Pittsburgh, Pennsylvania 15213, USA;

    Electrical and Computer Engineering Department, Carnegie Mellon University, 5000 Forbes Ave.,Pittsburgh, Pennsylvania 15213, USA;

    Materials Science and Engineering Department, Carnegie Mellon University, 5000 Forbes Ave.,Pittsburgh, Pennsylvania 15213, USA;

    Materials Science and Engineering Department, Carnegie Mellon University, 5000 Forbes Ave.,Pittsburgh, Pennsylvania 15213, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号