...
首页> 外文期刊>Journal of Applied Physics >Phase field model of domain dynamics in micron scale, ultrathin ferroelectric films: Application for multiferroic bismuth ferrite
【24h】

Phase field model of domain dynamics in micron scale, ultrathin ferroelectric films: Application for multiferroic bismuth ferrite

机译:微米级超薄铁电薄膜中域动态的相场模型:多铁性铋铁氧体的应用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this work, we report a massively parallel and time domain implementation of the 3D phase field model that can reach beyond micron scale and consider for arbitrary electrical and mechanical boundary conditions. The first part of the paper describes the theory and the numerical implementation of the model. A mixed-mode approach of finite difference and finite element grid has been used for calculating the nonlocal electrostatic and elastic interactions respectively. All the local and non-local interactions are shown to scale linearly up to thousands of processors. This massive paralleling allows to compare our results directly with experiments at the same length scales where the experiments themselves are performed. The second part of the paper presents results of ferroelectric domain switching in devices based on the multi-ferroic BiFeO_3. We have particularly emphasized the importance of charge driven domain growth and the effect of electrical boundary conditions that explain the temporal evolution of ferroelectric domains observed in recent experiments. We also predict a mechanism of controlling domain size in the multi-domain ferroelectric switching that could be useful for practical applications.
机译:在这项工作中,我们报告了3D相场模型的大规模并行和时域实现,该实现可以达到微米级以上并考虑任意电气和机械边界条件。本文的第一部分描述了该模型的理论和数值实现。有限差分和有限元网格的混合模式方法已分别用于计算非局部静电和弹性相互作用。显示所有本地和非本地交互都可以线性扩展至数千个处理器。这种大规模的并行操作可以将我们的结果直接与进行实验本身的相同长度比例的实验进行比较。本文的第二部分介绍了基于多铁性BiFeO_3的器件中铁电畴转换的结果。我们特别强调了电荷驱动域生长的重要性以及电边界条件的影响,这些影响解释了最近实验中观察到的铁电域的时间演化。我们还预测了在多域铁电开关中控制域大小的机制,该机制可能对实际应用有用。

著录项

  • 来源
    《Journal of Applied Physics》 |2012年第7期|p.074102.1-074102.11|共11页
  • 作者单位

    Department of Electrical Engineering and Computer Sciences, University of California, Berkeley,California 94720, USA;

    Department of Electrical Engineering and Computer Sciences, University of California, Berkeley,California 94720, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号