首页> 外文期刊>Journal of Applied Physics >Numerical analysis of formation properties of a high-field dipole domain for submicron GaAs field-effect transistor devices
【24h】

Numerical analysis of formation properties of a high-field dipole domain for submicron GaAs field-effect transistor devices

机译:亚微米GaAs场效应晶体管器件高场偶极子域形成特性的数值分析

获取原文
获取原文并翻译 | 示例
           

摘要

A typical 0.3-μm gate-length submicron GaAs metal-semiconductor field-effect transistor (MESFET) is simulated using a complete energy model that solves a complete form of the energy conservation equation, and also using a simplified energy model that only neglects heat flux for electrons. The simulations are carried out with fhe same device physical and bias conditions, and a transient analysis is made to investigate thermal electron conduction effects on the formation property of a high-field- dipole domain in the submicron GaAs MESFET. It is shown that the simplified model leads to the existence of a very unstable Gunn domain oscillating between the gate and drain, but the more accurate complete model gives a stable high-field domain confined well in the gate region due to thermal electron conduction. The crucial reason for this discrepancy between the two results is associated with the capable limits of accuracy in the simplified model. That is, this model gives rise to an unduly large retardation in the energy-gaining rate of electrons in the gate channel, so that the production of the negative differential resistance phenomenon by the electrons is largely delayed under the gate. Therefore, a traveling Gunn domain can be exhibited for submicron GaAs field-effect transistors in the simulation by a simplified energy model. It is demonstrated that even though simplified energy models are capable of reflecting the nonstationary effect of velocity overshoot properly, it is quite improper to apply these for studying device physics related to dipole domain properties; thermal electron conduction plays a pivotal role in forming a stable dipole domain in the submicron GaAs MESFET. In addition, the average effective valley-transition force for channel electrons (a new physical quantity first defined in the paper) is used to show that simplified energy models give a much larger magnitude for the force (approximately 1.8 eV/μm) compared to 1.2 eV/μm given by the complete energy model. Furthermore, the force is given closer to the drain end of the gate in the former models. Therefore, simplified energy models have a high possibility of creating a traveling domain for submicron devices.
机译:典型的0.3μm栅长亚微米GaAs金属半导体场效应晶体管(MESFET)使用完整的能量模型(可求解完整形式的能量守恒方程)以及简化的能量模型(仅忽略热通量)进行仿真电子。在相同的器件物理和偏置条件下进行了仿真,并进行了瞬态分析,以研究热电子传导对亚微米GaAs MESFET中高场偶极子域的形成特性的影响。结果表明,简化模型导致在栅极和漏极之间存在非常不稳定的耿氏域振荡,但是由于热电子传导,更精确的完整模型给出了一个稳定的高场域,其被很好地限制在栅极区域。这两个结果之间存在差异的关键原因与简化模型中可能的准确性限制有关。即,该模型在栅极沟道中引起电子的能量获得速率的过大的延迟,从而由电子在栅极下方大大延迟了负微分电阻现象的产生。因此,在仿真中,通过简化的能量模型,可以为亚微米GaAs场效应晶体管展示一个行进的Gunn域。结果表明,即使简化的能量模型能够正确反映速度超调的非平稳效应,将其用于研究与偶极子域特性相关的器件物理学还是相当不合适的。热电子传导在亚微米GaAs MESFET中形成稳定的偶极子域中起着关键作用。此外,沟道电子的平均有效谷值跃迁力(本文首次定义了新的物理量)用于表明,与1.2相比,简化的能量模型给出的力幅值要大得多(约1.8 eV /μm)。完整能量模型给出的eV /μm。此外,在以前的模型中,力被施加得更靠近浇口的排水端。因此,简化的能量模型很可能为亚微米设备创建传播域。

著录项

  • 来源
    《Journal of Applied Physics》 |2012年第5期|p.054513.1-054513.7|共7页
  • 作者

    Jang Jyegal;

  • 作者单位

    Department of Electronics Engineering, College of Engineering, University oflncheon, Incheon 406-772,South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号