...
首页> 外文期刊>Journal of Applied Physics >Transition from dislocation glide to creep controlled damage in fatigued thin Cu films
【24h】

Transition from dislocation glide to creep controlled damage in fatigued thin Cu films

机译:疲劳的薄铜膜从位错滑移过渡到蠕变控制的损伤

获取原文
获取原文并翻译 | 示例

摘要

The ultra-high cycle fatigue behavior of supported Cu films with thicknesses between 40 and 360 nm has been investigated using a novel atomic force microscope (AFM)-based resonance method. The damage created under strain controlled fatigue loading is investigated as a function of applied strain, film thickness, and cycle numbers up to 5 × 10~(10). For films thicker than 100 nm, extrusions and boundary cracks limit the fatigue performance but only appear above a threshold in the applied strain amplitude which scales inversely with the square root of the film thickness. The extrusion formation is attributed to dislocation activation. The grain boundary cracks are replaced by grain boundary grooves in films of 100nm and thinner. The grooves are believed to form by diffusion mediated creep processes, similar to observations at higher temperatures but here driven by cyclic stresses and capillarity, and become detectable once the accumulated plastic strain exceeds a critical value. These results indicate that due to creep processes, thinner films can be less resistant to fatigue than thicker films, particularly for large cycle numbers.
机译:使用新颖的基于原子力显微镜(AFM)的共振方法研究了厚度在40至360 nm之间的负载Cu膜的超高循环疲劳行为。研究了在应变控制的疲劳载荷下产生的损伤与所施加的应变,膜厚和最大5×10〜(10)的循环次数的关系。对于厚度大于100 nm的薄膜,挤压和边界裂纹会限制疲劳性能,但只会出现在所施加应变幅度的阈值之上,该阈值与薄膜厚度的平方根成反比。挤压形成归因于位错活化。在100nm和更薄的薄膜中,晶界裂纹被晶界凹槽代替。据信,这些凹槽是由扩散介导的蠕变过程形成的,类似于在较高温度下的观察结果,但此处受循环应力和毛细作用驱动,一旦累积的塑性应变超过临界值,就可以检测到。这些结果表明,由于蠕变过程,较厚的薄膜比较厚的薄膜耐疲劳性更差,特别是对于大循环次数而言。

著录项

  • 来源
    《Journal of Applied Physics》 |2013年第9期|093510.1-093510.8|共8页
  • 作者

    C. Trinks; C. A. Volkert;

  • 作者单位

    Institute of Materials Physics, Georg August University, 37077 Goettingen, Germany;

    Institute of Materials Physics, Georg August University, 37077 Goettingen, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号