首页> 外文期刊>Journal of Applied Physics >Development of 'fragility' in relaxor ferroelectrics
【24h】

Development of 'fragility' in relaxor ferroelectrics

机译:弛张铁电体“易碎性”的发展

获取原文
获取原文并翻译 | 示例

摘要

Relaxor ferroelectrics (RFs), a special class of the disordered crystals or ceramics, exhibit a pronounced slowdown of their dynamics upon cooling as glass-forming liquids, called the "Super-Arrhenius (SA)" relaxation. Despite great progress in glass-forming liquids, the "fragility" property of the SA relaxation in RFs remains unclear so far. By measuring the temperature-dependent dielectric relaxation in the typical relaxor Pb(Mg_(1/3)Nb_(2/3))O_3-x%PbTiO_3 (PMN - x%PT) with 0 ≤ x ≤ 20.0, we in-depth study the "fragility" properties of the SA relaxation in PMN - x%PT. Such fascinating issues as the mechanism of the "fragility" at an atomic scale, the roles of the systematic configurational entropy change and interaction among relaxing units (RUs, including polar nanoregions and free dipoles) and the relation between "fragility" and ferroelectric order are investigated. Our results show that both the "fragility" of the temperature-dependent SA relaxation and ferroelectric order in the PMN - x%PT systems investigated arise thermodynamically from the configurational-entropy loss due to the attractive interaction among RUs, and develops as a power law, possibly diverging at the finite critical temperature T_c. A reasonable physical scenario, based on our "configurational-entropy-loss" theory and Nowick's "stress-induced-ordering" theory, was proposed.
机译:弛豫铁电体(RFs)是一类特殊的无序晶体或陶瓷,冷却后,其形成玻璃的液体会显着降低其动力学,称为“超阿伦尼乌斯(SA)”弛豫。尽管在玻璃成形液体方面取得了很大进展,但到目前为止,RF中SA弛豫的“脆弱性”仍不清楚。通过测量0≤x≤20.0的典型弛豫器Pb(Mg_(1/3)Nb_(2/3))O_3-x%PbTiO_3(PMN-x%PT)中随温度变化的介电弛豫,我们进行了深入研究研究PMN中SA弛豫的“脆弱性”特性-x%PT。诸如原子级“易碎性”的机理,系统组态熵的变化和弛豫单元(RU,包括极性纳米区域和自由偶极子)之间的相互作用以及“易碎性”与铁电有序之间的关系等引人入胜的问题是:调查。我们的结果表明,所研究的PMN-x%PT系统中随温度变化的SA弛豫的“易碎性”和铁电有序性均是由于RU之间的吸引相互作用而引起的结构熵损失的热力学作用,并发展为幂定律,可能在有限的临界温度T_c处发散。根据我们的“构型熵损失”理论和诺维克的“应力诱发有序”理论,提出了一个合理的物理场景。

著录项

  • 来源
    《Journal of Applied Physics》 |2014年第5期|054106.1-054106.6|共6页
  • 作者单位

    College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China,Bioengineering Program and Mechanical Engineering and Mechanics Department, Lehigh University, 19 Memorial Drive West, Bethlehem, Pennsylvania 18015, USA,State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, China;

    State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, China;

    State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, China,Guangzhou Institute of Measurement and Testing Technology, Guangzhou 510663, China;

    Bioengineering Program and Mechanical Engineering and Mechanics Department, Lehigh University, 19 Memorial Drive West, Bethlehem, Pennsylvania 18015, USA;

    College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China;

    State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, China;

    State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号