...
首页> 外文期刊>Journal of Applied Physics >Characterization of carrier transport properties in strained crystalline Si wall-like structures in the quasi-quantum regime
【24h】

Characterization of carrier transport properties in strained crystalline Si wall-like structures in the quasi-quantum regime

机译:准量子态下应变晶体硅壁状结构中载流子传输特性的表征

获取原文
获取原文并翻译 | 示例
           

摘要

We report the transport characteristics of both electrons and holes through narrow constricted crystalline Si "wall-like" long-channels that were surrounded by a thermally grown SiO_2 layer. The strained buffering depth inside the Si region (due to Si/SiO_2 interfacial lattice mismatch) is where scattering is seen to enhance some modes of the carrier-lattice interaction, while suppressing others, thereby changing the relative value of the effective masses of both electrons and holes, as compared to bulk Si. In the narrowest wall devices, a considerable increase in conductivity was observed as a result of higher carrier mobilities due to lateral constriction and strain. The strain effects, which include the reversal splitting of light- and heavy-hole bands as well as the decrease of conduction-band effective mass by reduced Si bandgap energy, are formulated in our microscopic model for explaining the experimentally observed enhancements in both conduction- and valence-band mobilities with reduced Si wall thickness. Also, the enhancements of the valence-band and conduction-band mobilities are found to be associated with different aspects of theoretical model.
机译:我们报告了电子和空穴通过狭窄的收缩的晶体硅“壁状”长通道的传输特性,该通道被热生长的SiO_2层包围。 Si区域内部的应变缓冲深度(由于Si / SiO_2界面晶格失配)是在此处看到散射,从而增强了某些载体-晶格相互作用的模式,同时抑制了其他模式,从而改变了两个电子的有效质量的相对值和块状硅相比。在最窄的壁装置中,由于侧向收缩和应变导致较高的载流子迁移率,因此观察到电导率显着增加。在我们的微观模型中,提出了应变效应,包括光和重空穴带的反向分裂,以及由于硅带隙能量的减小而导致的导带有效质量的降低,以解释实验观察到的两种传导增强的作用。硅壁厚度减小的价带迁移率。同样,价带和导带迁移率的增强与理论模型的不同方面相关。

著录项

  • 来源
    《Journal of Applied Physics》 |2015年第13期|134301.1-134301.11|共11页
  • 作者单位

    Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, USA;

    Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, USA;

    Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87106, USA;

    Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, USA;

    Department of Electrical and Computer Engineering, University of Missouri-Columbia, Columbia, Missouri 65211, USA;

    Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87106, USA,Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87106, USA;

    Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, USA,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87106, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号