...
首页> 外文期刊>Journal of Applied Physics >Temporally and spatially resolved plasma spectroscopy in pulsed laser deposition of ultra-thin boron nitride films
【24h】

Temporally and spatially resolved plasma spectroscopy in pulsed laser deposition of ultra-thin boron nitride films

机译:时空分辨等离子体光谱在超薄氮化硼薄膜脉冲激光沉积中的应用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Physical vapor deposition (PVD) has recently been investigated as a viable, alternative growth technique for two-dimensional materials with multiple benefits over other vapor deposition synthesis methods. The high kinetic energies and chemical reactivities of the condensing species formed from PVD processes can facilitate growth over large areas and at reduced substrate temperatures. In this study, chemistry, kinetic energies, time of flight data, and spatial distributions within a PVD plasma plume ablated from a boron nitride (BN) target by a KrF laser at different pressures of nitrogen gas were investigated. Time resolved spectroscopy and wavelength specific imaging were used to identify and track atomic neutral and ionized species including B~+, B~*, N~+, N~*, and molecular species including N_2~*, N_2~+, and BN. Formation and decay of these species formed both from ablation of the target and from interactions with the background gas were investigated and provided insights into fundamental growth mechanisms of continuous, amorphous boron nitride thin films. The correlation of the plasma diagnostic results with film chemical composition and thickness uniformity studies helped to identify that a predominant mechanism for BN film formation is condensation surface recombination of boron ions and neutral atomic nitrogen species. These species arrive nearly simultaneously to the substrate location, and BN formation occurs microseconds before arrival of majority of N~+ ions generated by plume collisions with background molecular nitrogen. The energetic nature and extended dwelling time of incident N~+ ions at the substrate location was found to negatively impact resulting BN film stoichiometry and thickness. Growth of stoichiometric films was optimized at enriched concentrations of ionized boron and neutral atomic nitrogen in plasma near the condensation surface, providing few nanometer thick films with 1:1 BN stoichiometry and good thicknesses uniformity over macroscopic areas.
机译:物理气相沉积(PVD)最近已作为二维材料的可行的替代生长技术进行了研究,它比其他气相沉积合成方法具有更多优势。由PVD工艺形成的冷凝物的高动能和化学反应性可以促进大面积生长和降低的底物温度。在这项研究中,研究了在不同的氮气压力下,用KrF激光从氮化硼(BN)靶烧蚀的PVD等离子体羽中的化学,动能,飞行时间数据和空间分布。使用时间分辨光谱和波长特异性成像来识别和跟踪原子中性和离子化的物种,包括B〜+,B〜*,N〜+,N〜*和分子物种,包括N_2〜*,N_2〜+和BN。研究了这些物质的形成和衰变,这些物质既是靶材的烧蚀,又是与背景气体的相互作用,它们为连续,无定形氮化硼薄膜的基本生长机理提供了见识。等离子体诊断结果与薄膜化学成分和厚度均匀性研究的相关性有助于确定BN薄膜形成的主要机理是硼离子与中性原子氮物种的缩合表面复合。这些物质几乎同时到达底物的位置,BN的形成发生在与背景分子氮的羽流碰撞所产生的大多数N〜+离子到达之前的几秒钟。发现在衬底位置处入射的N〜+离子的能量性质和延长的停留时间会对所得的BN膜化学计量和厚度产生负面影响。在浓缩表面附近等离子体中的离子化硼和中性原子氮的富集浓度下,优化了化学计量膜的生长,提供了具有1:1 BN化学计量的几纳米厚膜,并且在宏观区域具有良好的厚度均匀性。

著录项

  • 来源
    《Journal of Applied Physics》 |2015年第16期|165305.1-165305.10|共10页
  • 作者单位

    Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, USA,School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA;

    Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, USA,University of Dayton, Dayton, Ohio 45409, USA;

    Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, USA,University of Dayton Research Institute, Dayton, Ohio 45409, USA;

    Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, USA,University of Dayton Research Institute, Dayton, Ohio 45409, USA;

    School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA;

    Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号