...
首页> 外文期刊>Journal of Applied Physics >Nano-needle structured, ambipolar high electrical conductivity SnO_x (x ≤ 1) thin films for infrared optoelectronics
【24h】

Nano-needle structured, ambipolar high electrical conductivity SnO_x (x ≤ 1) thin films for infrared optoelectronics

机译:纳米针结构的双极性高导电率SnO_x(x≤1)薄膜,用于红外光电

获取原文
获取原文并翻译 | 示例
           

摘要

SnO has become an important earth-abundant transparent conductive oxide (TCO) with applications not only in photovoltaics but also in electrodes for energy storage. For optoelectronic applications, low fabrication temperature, high electrical conductivity, and low optical losses are highly desirable. This study presents self-assembled, ambipolar (i.e., n and p-type) nano-needle structured SnO_x (x ≤ 1) thin films with high electrical conductivity, low infrared (IR) optical losses, and potentials for effective light trapping. These nano-needle structured SnO_x films are fabricated through non-reactive co-sputtering of Sn and SnO_2 followed by crystallization annealing at low temperatures <250℃. The crystallization of SnO_x thin films occurred rapidly above 210 ℃, resulting in SnO nano-needles with average dimensions of 1 μm long, 0.1 μm wide, and 0.15 μm thick that are interspersed with Sn nanocrystals. The optical scattering from these nanostructures can be utilized for light trapping in thin film absorbers. We also found that laser pre-patterning enabled control over nano-needle crystal size and growth directions. The electrical conductivity of 1500-2000 S/cm is comparable to state-of-the-art SnO_2:F TCOs while the fabrication temperature is reduced by ~200℃, enabling a broader range of applications, such as optoelectronics on flexible substrates. Hall effect measurements show an intriguing ambipolar behavior depending on the annealing ambient. Especially, a strong p-type conductivity with a hole concentration of p ~ 5 × 10~(21) cm~(-3) and mobility μ_p~2cm~2 V~(-1) s~(-1) is obtained in a weak oxidizing ambient. Such a high p-type conductivity is particularly rare in TCOs, and it offers potential applications in bipolar oxide semiconductor devices. Optical measurements showed a low absorption loss of <3% in a broad IR wavelength regime of λ = 1100-2500 nm for p-type SnO_x, suggesting that these nano-needle structured SnO_x TCOs can be engineered to enhance low-loss optical scattering/light trapping in thin film thermophotovoltaic cells and IR photodetectors.
机译:SnO已成为重要的富含地球的透明导电氧化物(TCO),不仅在光伏领域而且在储能电极中都有应用。对于光电应用,非常需要低制造温度,高电导率和低光损耗。这项研究提出了具有高电导率,低红外(IR)光学损耗和有效捕光潜力的自组装,双极性(即n型和p型)纳米针结构SnO_x(x≤1)薄膜。这些纳米针结构的SnO_x膜是通过Sn和SnO_2的非反应性共溅射,然后在<250℃的低温下进行结晶退火而制成的。 SnO_x薄膜的结晶在210℃以上迅速发生,形成平均尺寸为长1μm,宽0.1μm和厚0.15μm的SnO纳米针,并散布着Sn纳米晶体。来自这些纳米结构的光散射可用于薄膜吸收器中的光捕获。我们还发现,激光预图案化可以控制纳米针晶体的大小和生长方向。 1500-2000 S / cm的电导率可与最新的SnO_2:F TCO媲美,而制造温度降低了约200℃,从而实现了更广泛的应用,例如柔性基板上的光电。霍尔效应测量显示出取决于退火环境的有趣的双极性行为。尤其是,在硅中获得了强的p型导电性,空穴浓度为p〜5×10〜(21)cm〜(-3),迁移率μ_p〜2cm〜2 V〜(-1)s〜(-1)。弱氧化环境。如此高的p型电导率在TCO中尤为罕见,它在双极氧化物半导体器件中具有潜在的应用前景。光学测量表明,对于p型SnO_x,在λ= 1100-2500 nm的宽红外波长范围内,吸收损耗低≤3%,这表明这些纳米针结构的SnO_x TCO可以进行工程设计以增强低损耗光学散射/薄膜热光电电池和红外光电探测器中的光陷阱。

著录项

  • 来源
    《Journal of Applied Physics》 |2015年第10期|103109.1-103109.7|共7页
  • 作者单位

    Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, USA;

    Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, USA;

    Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号