...
首页> 外文期刊>Journal of Applied Physics >Effect of crystalline/amorphous interfaces on thermal transport across confined thin films and superlattices
【24h】

Effect of crystalline/amorphous interfaces on thermal transport across confined thin films and superlattices

机译:晶体/非晶界面对有限薄膜和超晶格间热传输的影响

获取原文
获取原文并翻译 | 示例

摘要

We report on the thermal boundary resistances across crystalline and amorphous confined thin films and the thermal conductivities of amorphous/crystalline superlattices for Si/Ge systems as determined via non-equilibrium molecular dynamics simulations. Thermal resistances across disordered Si or Ge thin films increase with increasing length of the interfacial thin films and in general demonstrate higher thermal boundary resistances in comparison to ordered films. However, for films ≤3 nm, the resistances are highly dependent on the spectral overlap of the density of states between the film and leads. Furthermore, the resistances at a single amorphous/crystalline interface in these structures are much lower than those at interfaces between the corresponding crystalline materials, suggesting that diffusive scattering at an interface could result in higher energy transmissions in these systems. We use these findings, together with the fact that high mass ratios between amorphous and crystalline materials can lead to higher thermal resistances across thin films, to design amorphous/crystalline superlattices with very low thermal conductivities. In this regard, we study the thermal conductivities of amorphous/crystalline superlattices and show that the thermal conductivities decrease monotonically with increasing interface densities above 0.1 nm~(-1). These thermal conductivities are lower than that of the homogeneous amorphous counterparts, which alludes to the fact that interfaces non-negligibly contribute to thermal resistance in these superlattices. Our results suggest that the thermal conductivity of superlattices can be reduced below the amorphous limit of its material constituent even when one of the materials remains crystalline.
机译:我们报告了通过非平衡分子动力学模拟确定的跨晶体和非晶态受限薄膜的热边界电阻以及Si / Ge系统的非晶态/晶体超晶格的热导率。跨无序Si或Ge薄膜的热阻随界面薄膜长度的增加而增加,并且与有序薄膜相比,通常表现出更高的热边界电阻。但是,对于≤3nm的薄膜,电阻高度依赖于薄膜和引线之间状态密度的光谱重叠。此外,在这些结构中的单个非晶/晶体界面处的电阻比相应的晶体材料之间的界面处的电阻低得多,这表明在界面处的扩散散射可导致这些系统中更高的能量传输。我们利用这些发现,以及非晶和晶体材料之间的高质量比可导致薄膜上更高的热阻这一事实,来设计出导热率极低的非晶/晶体超晶格。在这方面,我们研究了非晶/晶体超晶格的热导率,结果表明,当界面密度高于0.1 nm〜(-1)时,热导率会单调降低。这些热导率低于均质非晶态对应物的热导率,这暗示了这样的事实,即界面在这些超晶格中对热阻的贡献不可忽略。我们的结果表明,即使其中一种材料保持结晶状态,超晶格的热导率也可以降低到其材料成分的无定形极限以下。

著录项

  • 来源
    《Journal of Applied Physics 》 |2016年第23期| 235305.1-235305.8| 共8页
  • 作者单位

    Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, USA;

    Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, USA;

    Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号