首页> 外文学位 >Thermal transport by phonons across semiconductor interfaces, thin films, and superlattices.
【24h】

Thermal transport by phonons across semiconductor interfaces, thin films, and superlattices.

机译:声子通过半导体界面,薄膜和超晶格进行热传输。

获取原文
获取原文并翻译 | 示例

摘要

Advanced technological devices often contain a high density of semiconductor interfaces. Phonon scattering at these interfaces impedes thermal transport through the device and can adversely affect performance and reliability. To improve device design, accurate phonon transport models are needed. Such models will also allow improvements in the design of semiconductor superlattices (periodic nanostructures containing thin films of alternating species) for thermoelectric energy conversion applications. In this thesis, thermal transport by phonons across silicon- and germanium-based interfaces, thin films, and superlattices is studied using molecular dynamics (MD) simulation and lattice dynamics (LD) calculations.;Insight into the phonon transport across interfaces and thin films is gained by comparing MD-predicted thermal resistances to values calculated theoretically using LD-predicted phonon properties. Using this approach, the phonon distributions on either side of an interface are inferred to deviate from their bulk values. For interfaces with large species mismatch, however, the phonon distributions are well-approximated by the equilibrium distribution. Two regimes for the thickness-dependence of the thin film thermal resistance are identified. For films with thicknesses less than ∼2 nm, the thermal resistance is affected by changes in the allowed vibrational states in the film. For thicker films, the thermal resistance is affected by the presence of phonon-phonon scattering in the film.;The effect of interfacial species mixing on the thermal conductivity of semiconductor superlattices and the link between the superlattice unit cell design and the thermal conductivity are then explored. Adding species mixing to an otherwise perfectly periodic superlattice removes the phonon coherence, which reduces the thermal conductivity and alters its dependence on period length. For a model superlattice system, a new class of unit cell design is found to yield significant reductions (17%) in the thermal conductivity compared to the minimum value predicted for traditional designs containing two layers in the unit cell. The low thermal conductivities are attributed to reductions in both the phonon group velocities and mean free paths in the regime where the phonon transport has both coherent and incoherent qualities.
机译:先进的技术设备通常包含高密度的半导体接口。这些界面处的声子散射会阻碍通过设备的热传输,并可能对性能和可靠性产生不利影响。为了改善设备设计,需要准确的声子传输模型。这种模型还将允许改进用于热电能量转换应用的半导体超晶格(包含交替物种薄膜的周期性纳米结构)的设计。本文通过分子动力学(MD)模拟和晶格动力学(LD)计算研究了声子在硅和锗基界面,薄膜和超晶格之间的热传输。研究了声子在界面和薄膜之间的传输。通过将MD预测的热阻与理论上使用LD预测的声子特性计算出的值进行比较,可以得出。使用这种方法,可以推断出界面两侧的声子分布偏离其总体值。但是,对于具有大物种不匹配的界面,声子分布通过平衡分布很好地近似。确定了两种取决于薄膜热阻的厚度的方式。对于厚度小于约2 nm的薄膜,热阻会受到薄膜中允许的振动状态变化的影响。对于较厚的薄膜,热阻受薄膜中声子-声子散射的影响。;界面种类混合对半导体超晶格的导热率的影响,以及超晶格晶胞设计与导热率之间的联系探索。将物质混合添加到本来完美的周期性超晶格中,可以消除声子相干性,从而降低热导率并改变其对周期长度的依赖性。对于模型超晶格系统,与在单元格中包含两层的传统设计所预测的最小值相比,发现了一类新的单元晶格设计可显着降低热导率(17%)。低的热导率归因于声子传输速度具有相干和不相干质量的体系中声子群速度和平均自由程的降低。

著录项

  • 作者

    Landry, Eric Scott.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Engineering Mechanical.;Engineering Materials Science.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号