首页> 外文期刊>Journal of Applied Physics >Effect of initial damage variability on hot-spot nucleation in energetic materials
【24h】

Effect of initial damage variability on hot-spot nucleation in energetic materials

机译:初始损伤变异性对高能材料中热点成核的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Mechanical insult may be able to produce chemical transformations in solids when the energy is released in highly localized regions. This phenomenon is responsible for the nucleation of hotspots that are responsible for ignition of energetic materials. The concentration of energy at microstructural defects leads to the probabilistic nature of ignition. The effect of the microstructure of the energetic particles, specifically the influence of the initial crack distribution on the sensitivity to ignition, is studied for a particle embedded in a polymeric matrix at impact velocities 100 m/s and 400 m/s with finite element simulations that couple fracture dynamics and heat transport. A phase field damage model that includes heat sources due to frictional heating at the crack surfaces and heat dissipation during crack propagation is developed and verified. These heat sources are compared and, in the range of impact velocities studied, heat generation due to friction is more important than dissipation due to crack propagation. Hot-spots nucleated at 100 m/s do not reach the critical temperature while conditions consistent with the Lee-Tarver criterion for ignition are observed at 400 m/s impact velocity. The variability observed due to the stochasticity of the initial crack distribution is studied and it increases with a higher impact velocity. In particular, regions of high temperature develop close to cracks intersecting the particle polymer interface. Therefore, controlling the surface quality of the energetic particles may lead to a reduction on the sensitivity uncertainty in polymer-bonded explosives. Published by AIP Publishing.
机译:当能量在高度局部的区域释放时,机械侮辱可能会在固体中产生化学转化。这种现象是造成热点的成核的原因,这些热点导致了高能物质的燃烧。微观结构缺陷处的能量集中导致着火的概率性。用有限元模拟研究了嵌入在聚合物基体中的粒子在冲击速度为100 m / s和400 m / s时,高能粒子的微观结构的影响,特别是初始裂纹分布对着火敏感性的影响。结合了断裂动力学和热传递。建立并验证了相场损伤模型,该模型包括由于裂纹表面的摩擦加热和裂纹扩展过程中的散热引起的热源。比较了这些热源,并且在研究的冲击速度范围内,摩擦产生的热量比裂纹扩展产生的热量更重要。以100 m / s成核的热点没有达到临界温度,而在400 m / s的冲击速度下观察到符合Lee-Tarver点火标准的条件。研究了由于初始裂纹分布的随机性而观察到的变异性,并且随着更高的冲击速度而增加。特别是,高温区域靠近与颗粒聚合物界面相交的裂缝。因此,控制高能粒子的表面质量可能会导致聚合物粘结炸药的灵敏度不确定性降低。由AIP Publishing发布。

著录项

  • 来源
    《Journal of Applied Physics》 |2018年第2期|025104.1-025104.14|共14页
  • 作者单位

    Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA;

    Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA;

    Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号