首页> 外文期刊>Zeitschrift fur Angewandte Mathematik und Mechanik >Discretization of Pardoux-Peng's Backward Stochastic Differential Equations
【24h】

Discretization of Pardoux-Peng's Backward Stochastic Differential Equations

机译:Pardoux-Peng的倒向随机微分方程的离散化

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a probabilistic numerical method for solving backward stochastic differential equations introduced by E. Pardoux and S. Peng., associated with a forward S.D.E. We restrict ourselves to the case where the generator of the backward equation depends on the forward and backward processes but not on the diffusion term. First we build a Euler scheme with n steps to discretize the backward S.D.E. in time. Then we show that it is necessary to make a second discretization in space, which leads to evaluate the solution of the backward S.D.E. along N simulated trajectories of the forward process. Thus we build up an algorithm which permits to estimate the value at time zero of the solution of the backward S.D.E. with an error of order 1 + n/N in dimension 1.
机译:在本文中,我们提出了一种概率数值方法,用于求解由E. Pardoux和S. Peng。提出的与正向S.D.E.相关联的向后随机微分方程。我们将自己限制在其中后向方程生成器取决于前向和后向过程而不取决于扩散项的情况。首先,我们用n个步骤构建一个Euler方案以离散化后向S.D.E.及时。然后我们表明有必要在空间中进行第二次离散化,从而评估向后S.D.E.沿着N个前进过程的模拟轨迹。因此,我们建立了一种算法,该算法可以估计后向S.D.E.解的时间零时的值。尺寸1中的误差为1 / n + n / N。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号