首页> 外文期刊>Journal of Applied Mathematics and Computing >Comment on “Condition number of W-weighted Drazin inverse and their condition numbers of singular linear systems”
【24h】

Comment on “Condition number of W-weighted Drazin inverse and their condition numbers of singular linear systems”

机译:关于“ W加权Drazin逆的条件数及其奇异线性系统的条件数”的评论

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we establish the explicit condition number formulas for the W-weighted Drazin inverse of a singular matrix A, where A∈? m×n , W∈? n×m , ?((AW) k )=?((AW) k *), ?((WA) k )=?((WA) k *), and k=max{index(AW), index(WA)}, by the Schur decomposition of A and W. The sensitivity for the W-weighted Drazin-inverse solution of singular systems is also discussed. Based on this form of Schur decomposition, the explicit condition number formulas for the W-weighted Drazin inverse are given by the spectral norm and Frobenius norm instead of the ‖?‖ P,W -norm, where P is a transformation matrix of the Jordan canonical form of AW, thereby improving the earlier work of Lei et al. (Appl. Math. Comput. 165:185–194, [2005]) and Wang et al. (Appl. Math. Comput. 162:434–446, [2005]).
机译:在本文中,我们建立了奇异矩阵A的W加权Drazin逆的显式条件数公式,其中A∈? m×n ,W∈? n×m ,?((AW)k )=?((AW)k * ),?((WA)k )=? ((WA)k * ),并且k = max {index(AW),index(WA)},是通过A和W的Schur分解实现的。W加权Drazin-还讨论了奇异系统的逆解。基于这种形式的Schur分解,W加权Drazin逆的显式条件数公式由谱范数和Frobenius范数而不是“?” P,W 范数给出,其中P是变换约旦典范形式的AW矩阵,从而改善了Lei等人的早期工作。 (Appl。Math。Comput。165:185–194,[2005])和Wang等。 (应用数学计算162:434-446,[2005])。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号