...
首页> 外文期刊>Journal of Applied Biomechanics >Effects of Optimization Technique on Simulated Muscle Activations and Forces
【24h】

Effects of Optimization Technique on Simulated Muscle Activations and Forces

机译:优化技术对模拟肌肉激活和力的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Two optimization techniques, static optimization (SO) and computed muscle control (CMC), are often used in OpenSim to estimate the muscle activations and forces responsible for movement. Although differences between SO and CMC muscle function have been reported, the accuracy of each technique and the combined effect of optimization and model choice on simulated muscle function is unclear. The purpose of this study was to quantitatively compare the SO and CMC estimates of muscle activations and forces during gait with the experimental data in the Gait2392 and Full Body Running models. In OpenSim (version 3.1), muscle function during gait was estimated using SO and CMC in 6 subjects in each model and validated against experimental muscle activations and joint torques. Experimental and simulated activation agreement was sensitive to optimization technique for the soleus and tibialis anterior. Knee extension torque error was greater with CMC than SO. Muscle forces, activations, and co-contraction indices tended to be higher with CMC and more sensitive to model choice. CMC's inclusion of passive muscle forces, muscle activation-contraction dynamics, and a proportional-derivative controller to track kinematics contributes to these differences. Model and optimization technique choices should be validated using experimental activations collected simultaneously with the data used to generate the simulation.
机译:两种优化技术,静态优化(SO)和计算的肌肉控制(CMC)通常用于Opensim,以估计负责运动的肌肉激活和力量。尽管已经报道了所以和CMC肌肉功能之间的差异,但是每种技术的准确性和优化和模型选择对模拟肌肉功能的综合效果尚不清楚。本研究的目的是在步态期间定量地比较肌肉激活和力的CMC估计,并在Gait2392和全身运行模型中的实验数据。在OpenSim(3.1版)中,使用SO和CMC在每个模型中的6个受试者中估计步态期间的肌肉功能,并针对实验肌肉激活和联合扭矩验证。实验和模拟激活协议对Soleus和Tibialis前部的优化技术敏感。膝盖延伸扭矩误差比CMC更大。肌肉力,激活和共收缩索引往往更高,CMC更高,对模型选择更敏感。 CMC包含被动肌肉,肌肉激活 - 收缩动力学和比例衍生控制器,以跟踪运动学有助于这些差异。使用与用于生成模拟的数据同时收集的实验激活,应验证模型和优化技术选择。

著录项

  • 来源
    《Journal of Applied Biomechanics》 |2020年第4期|259-278|共20页
  • 作者单位

    Ohio State Univ Dept Mech & Aerosp Engn Columbus OH 43210 USA|Univ Texas Austin Dept Mech Engn Austin TX 78712 USA;

    Ohio State Univ Dept Mech & Aerosp Engn Columbus OH 43210 USA|Otterbein Univ Dept Engn Westerville OH USA;

    Ohio State Univ Dept Mech & Aerosp Engn Columbus OH 43210 USA;

    Ohio State Univ Dept Biomed Engn Columbus OH 43210 USA;

    Ohio State Univ Dept Mech & Aerosp Engn Columbus OH 43210 USA|Ohio State Univ Dept Biomed Engn Columbus OH 43210 USA|Ohio State Univ Dept Orthopaed Columbus OH 43210 USA|Ohio State Univ Sch Hlth & Rehabil Sci Columbus OH 43210 USA;

    Ohio State Univ Dept Mech & Aerosp Engn Columbus OH 43210 USA|Ohio State Univ Dept Orthopaed Columbus OH 43210 USA|Ohio State Univ Sch Hlth & Rehabil Sci Columbus OH 43210 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    musculoskeletal models; dynamic simulations; OpenSim; static optimization; computed muscle control;

    机译:肌肉骨骼模型;动态仿真;OpenSim;静态优化;计算肌肉控制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号