首页> 外文期刊>American Chemical Society >Electronic Modification of the [RuII(tpy)(bpy)(OH2)]2+ Scaffold: Effects on Catalytic Water Oxidation
【24h】

Electronic Modification of the [RuII(tpy)(bpy)(OH2)]2+ Scaffold: Effects on Catalytic Water Oxidation

机译:[RuII(tpy)(bpy)(OH2)] 2+支架的电子修饰:对催化水氧化的影响

获取原文
获取原文并翻译 | 示例
       

摘要

The mechanistic details of the Ce(IV)-driven oxidation of water mediated by a series of structurally related catalysts formulated as [Ru(tpy)(L)(OH2)]2+ [L = 2,2′-bipyridine (bpy), 1; 4,4′-dimethoxy-2,2′-bipyridine (bpy-OMe), 2; 4,4′-dicarboxy-2,2′-bipyridine (bpy-CO2H), 3; tpy = 2,2′;6′′,2′′-terpyridine] is reported. Cyclic voltammetry shows that each of these complexes undergo three successive (proton-coupled) electron-transfer reactions to generate the [RuV(tpy)(L)O]3+ ([RuV=O]3+) motif; the relative positions of each of these redox couples reflects the nature of the electron-donating or withdrawing character of the substituents on the bpy ligands. The first two (proton-coupled) electron-transfer reaction steps (k1 and k2) were determined by stopped-flow spectroscopic techniques to be faster for 3 than 1 and 2. The addition of one (or more) equivalents of the terminal electron-acceptor, (NH4)2[Ce(NO3)6] (CAN), to the [RuIV(tpy)(L)O]2+ ([RuIV=O]2+) forms of each of the catalysts, however, leads to divergent reaction pathways. The addition of 1 eq of CAN to the [RuIV=O]2+ form of 2 generates [RuV=O]3+ (k3 = 3.7 M−1 s−1), which, in turn, undergoes slow O−O bond formation with the substrate (kO−O = 3 × 10−5 s−1). The minimal (or negligible) thermodynamic driving force for the reaction between the [RuIV=O]2+ form of 1 or 3 and 1 eq of CAN results in slow reactivity, but the rate-determining step is assigned as the liberation of dioxygen from the [RuIV−OO]2+ level under catalytic conditions for each complex. Complex 2, however, passes through the [RuV−OO]3+ level prior to the rapid loss of dioxygen. Evidence for a competing reaction pathway is provided for 3, where the [RuV=O]3+ and [RuIII−OH]2+ redox levels can be generated by disproportionation of the [RuIV=O]2+ form of the catalyst (kd = 1.2 M−1 s−1). An auxiliary reaction pathway involving the abstraction of an O-atom from CAN is also implicated during catalysis. The variability of reactivity for 1-3, including the position of the RDS and potential for O-atom transfer from the terminal oxidant, is confirmed to be intimately sensitive to electron density at the metal site through extensive kinetic and isotopic labeling experiments. This study outlines the need to strike a balance between the reactivity of the [Ru═O]z unit and the accessibility of higher redox levels in pursuit of robust and reactive water oxidation catalysts.
机译:Ce(IV)驱动的水氧化机理的机理细节由一系列与结构相关的催化剂调配为[Ru(tpy)(L)(OH 2 )] 2+ < / sup> [L = 2,2'-联吡啶(bpy),1; 4,4'-二甲氧基-2,2'-联吡啶(bpy-OMe),2; 4,4'-二羧基-2,2'-联吡啶(bpy-CO 2 H),3;报道了tpy = 2,2′; 6′,2′′-叔吡啶]。循环伏安法表明,这些络合物中的每一个都经历三个连续的(质子偶联)电子转移反应,生成[Ru V (tpy)(L)O] 3 + ([Ru V = O] 3 + )主题;这些氧化还原对中每一个的相对位置反映了bpy配体上取代基的给电子或吸电子特征。通过停止流光谱技术确定前两个(质子耦合的)电子转移反应步骤(k 1 和k 2 )对于3比1快3和1。 2.添加一(或多个)当量的末端电子受体,(NH 4 2 [Ce(NO 3 6 ](CAN),移至[Ru IV (tpy)(L)O] 2 + ([Ru IV <但是,每种催化剂的/ sup> = O] 2 + 形式会导致不同的反应路径。将1 eq CAN加到2的[Ru IV = O] 2 + 形式中会生成[Ru V = O] 3 + (k 3 = 3.7 M −1 s −1 ),反过来,它经历缓慢的O−与底物形成O键(k O-O = 3×10 -5 s -1 )。 [Ru IV = O] 2 + 形式的1或3和1 eq CAN之间反应的最小(或可忽略)热力学驱动力导致反应缓慢,但速率确定步骤被指定为在每种复合物的催化条件下,双氧从[Ru IV -OO] 2 + 的释放。但是,复合物2在快速失去双氧之前先经过[Ru V -OO] 3 + 的水平。提供了竞争性反应途径的证据3,其中[Ru V = O] 3 + 和[Ru III -OH] < sup> 2 + 氧化还原水平可以通过催化剂的[Ru IV = O] 2 + 形式的歧化而产生(k d < / sub> = 1.2 M -1 s -1 )。在催化过程中还牵涉到涉及从CAN提取O原子的辅助反应途径。通过广泛的动力学和同位素标记实验,证实了1-3反应性的可变性,包括RDS的位置和O原子从末端氧化剂转移的可能性,对金属位置的电子密度非常敏感。这项研究概述了在寻求鲁棒的反应性水氧化催化剂时,需要在[Ru═O] z 单元的反应性与较高氧化还原水平的可及性之间取得平衡的需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号