首页> 外文期刊>Journal of Ambient Intelligence and Humanized Computing >A fuzzy particle swarm optimization algorithm and its application to hotspot events in spatial analysis
【24h】

A fuzzy particle swarm optimization algorithm and its application to hotspot events in spatial analysis

机译:模糊粒子群优化算法及其在空间分析热点事件中的应用

获取原文
获取原文并翻译 | 示例

摘要

A new Extended Fuzzy Particle Swarm Optimization (EFPSO) algorithm is presented and used for the determination of hotspot events in spatial analysis. In previous works (Di Martino et al. in Int J Hybrid Intell Syst 4:1–14, 2007; Di Martino and Sessa in Proceedings VISUAL 2008. LNCS 5188, Springer-Verlag, Berlin, pp. 92–95, 2008; Di Martino and Sessa in Expert Systems with Applications, to appear. doi:10.​1016/​j.​eswa.​2011.​03.​071, 2011) we have shown that the Extended Fuzzy C-Means (EFCM) can be used in the approximation of hotspot areas where the data are events geo-referenced as points on the geographic map and EFCM gives better results with respect to the classical Fuzzy C-Means. Here we compare EFPSO and EFCM, implementing both methods in a Geographic Information System. We apply the two methods to two specific datasets for crime analysis and forest fire point-events showing that EFPSO has the best performance with respect to EFCM.
机译:提出了一种新的扩展模糊粒子群算法(EFPSO)并将其用于空间分析中热点事件的确定。在以前的著作中(Di Martino等人,Int J Hybrid Intell Syst 4:1-14,2007; Di Martino和Sessa在Proceedings VISUAL 2008中。LNCS5188,Springer-Verlag,柏林,第92–95,2008; Di Martino和Sessa出现在具有应用程序的专家系统中。doi:10.1016 / j.eswa.2011.03.071,2011),我们证明了扩展模糊C均值(EFCM)可以可以用于热点区域的近似中,在热点区域中数据是地理参考为地理地图上的点的事件,而EFCM相对于经典的模糊C均值提供了更好的结果。在这里,我们比较了EFPSO和EFCM,它们在地理信息系统中实现了这两种方法。我们将这两种方法应用于两个用于犯罪分析和森林火灾事件的特定数据集,表明EFPSO在EFCM方面具有最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号